本文整理匯總了C#中System.Point.Distance方法的典型用法代碼示例。如果您正苦於以下問題:C# Point.Distance方法的具體用法?C# Point.Distance怎麽用?C# Point.Distance使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Point
的用法示例。
在下文中一共展示了Point.Distance方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: IsDoubleClick
/// <summary>
/// Determines whether the last click is a double click.
/// </summary>
/// <param name="sender">The sender.</param>
/// <param name="position">The position.</param>
/// <returns>True if the click was a double click.</returns>
internal static bool IsDoubleClick(object sender, Point position)
{
long clickTicks = DateTime.Now.Ticks;
long elapsedTicks = clickTicks - lastClickTicks;
long elapsedTime = elapsedTicks / TimeSpan.TicksPerMillisecond;
bool quickClick = elapsedTime <= DoubleClickSpeed;
bool senderMatch = lastSender != null && sender.Equals(lastSender.Target);
if (senderMatch && quickClick && position.Distance(lastPosition) <= MaxMoveDistance)
{
// Double click!
lastClickTicks = 0;
lastSender = null;
return true;
}
// Not a double click
lastClickTicks = clickTicks;
lastPosition = position;
if (!quickClick)
{
lastSender = new WeakReference(sender);
}
return false;
}
示例2: ClosestPoint
/// <summary>
/// Computes the closest point on this line segment to another point.
/// </summary>
/// <returns>
/// A Coordinate which is the closest point on the line segment to the point p.
/// </returns>
public static Point ClosestPoint(Point p, Point lineSegFrom, Point lineSegTo)
{
var factor = ProjectionFactor(p, lineSegFrom, lineSegTo);
if ((factor > 0) && (factor < 1))
return Project(p, lineSegFrom, lineSegTo);
var dist0 = lineSegFrom.Distance(p);
var dist1 = lineSegTo.Distance(p);
return dist0 < dist1 ? lineSegFrom : lineSegTo;
}
示例3: ClosestPoint
/// <summary>
/// Computes the closest point on this line segment to another point.
/// </summary>
/// <param name="p">The point to find the closest point to.</param>
/// <returns>
/// A Coordinate which is the closest point on the line segment to the point p.
/// </returns>
public static Point ClosestPoint(Point p, Point LineSegFrom, Point LineSegTo)
{
var factor = ProjectionFactor(p, LineSegFrom, LineSegTo);
if (factor > 0 && factor < 1)
return Project(p, LineSegFrom, LineSegTo);
var dist0 = LineSegFrom.Distance(p);
var dist1 = LineSegTo.Distance(p);
return dist0 < dist1 ? LineSegFrom : LineSegTo;
}
示例4: CheckVictory
/// <summary>
/// Checks if one of the players won
/// </summary>
/// <returns>playerId if someone won, -1 if no one did</returns>
public string CheckVictory(int x, int y, int z)
{
/*
* Basic winner finding algo:
* 1. generate all posible direction vectors ([-1,-1,-1], [-1,-1,0] ... )
* 2. move from current position in vector direction while its posible, getting point A
* 3. move from current position in reverse vector direction while posible, getting point B
* 4. if distance between A and B is field size, we've got the winner!
*
*/
var who = Field[x, y, z];
if (who == 0) return null;
var ways = new[] { -1, 0, 1 };
foreach (var wx in ways)
{
foreach (var wy in ways)
{
foreach (var wz in ways)
{
if (wx == 0 && wy == 0 && wz == 0)
continue;
Point pa = new Point(x, y, z);
Point pb = new Point(x, y, z);
Point newA;
while ((newA = pa.Move(wx, wy, wz, _fieldSize)) != null
&& Field[newA.X, newA.Y, newA.Z] == who)
{
pa = newA;
}
Point newB;
while ((newB = pb.Move(-wx, -wy, -wz, _fieldSize)) != null
&& Field[newB.X, newB.Y, newB.Z] == who)
{
pb = newB;
}
if (pa.Distance(pb) == _fieldSize)
{
return Players[who - 1];
}
}
}
}
return null;
}
示例5: GetShortestPath
public List<Node> GetShortestPath(Point startPoint, Point endPoint)
{
if (startPoint == null || endPoint == null)
return null;
// We create and place the start a goal node into the graph
Node startNode = new Node(startPoint);
Node endNode = new Node(endPoint);
List<Node> path = null;
if (false && startPoint.Distance(endPoint) > _cacheAcceptanceDistance)
{
// Check to see if this path is cached
List<Node> cachedPath = GetCachedPath(startPoint, endPoint);
if (cachedPath != null)
{
// We have a close match, build the shortest path using the cached path
path = DStarLite(startNode, endNode, cachedPath);
}
else
{
// No close match, use A*
path = AStar(startNode, endNode);
}
}
else
{
// The points are close, just use A*
path = AStar(startNode, endNode);
}
AddPathToShortestPathCache(path);
// Return the path if there is one
return (path != null && path.Contains(startNode))
? SmoothPath(path)
: path;
}
示例6: DistancePointLine
/// <summary>
/// Computes the distance from a point p to a line segment AB.
/// Note: NON-ROBUST!
/// </summary>
/// <param name="p">The point to compute the distance for.</param>
/// <param name="a">One point of the line.</param>
/// <param name="b">Another point of the line (must be different to A).</param>
/// <returns> The distance from p to line segment AB.</returns>
public static double DistancePointLine(Point p, Point a, Point b)
{
// if start == end, then use pt distance
if (a.Equals(b))
return p.Distance(a);
// otherwise use comp.graphics.algorithms Frequently Asked Questions method
/*(1) AC dot AB
r = ---------
||AB||^2
r has the following meaning:
r=0 Point = A
r=1 Point = B
r<0 Point is on the backward extension of AB
r>1 Point is on the forward extension of AB
0<r<1 Point is interior to AB
*/
var r = ((p.X - a.X)*(b.X - a.X) + (p.Y - a.Y)*(b.Y - a.Y))
/
((b.X - a.X)*(b.X - a.X) + (b.Y - a.Y)*(b.Y - a.Y));
if (r <= 0.0) return p.Distance(a);
if (r >= 1.0) return p.Distance(b);
/*(2)
(Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
s = -----------------------------
Curve^2
Then the distance from C to Point = |s|*Curve.
*/
var s = ((a.Y - p.Y)*(b.X - a.X) - (a.X - p.X)*(b.Y - a.Y))
/
((b.X - a.X)*(b.X - a.X) + (b.Y - a.Y)*(b.Y - a.Y));
return Math.Abs(s)*Math.Sqrt((b.X - a.X)*(b.X - a.X) + (b.Y - a.Y)*(b.Y - a.Y));
}
示例7: Line
public Line(Point beg, Point end) {
double l = beg.Distance(end);
if (FP.eq(l, Math.PI)) {
Debug.Assert(FP.eq(beg.ra, end.ra));
phi = -Math.PI/2;
theta = Math.PI/2;
psi = beg.ra < 0.0 ? Math.PI*2 + beg.ra : beg.ra;
length = Math.PI;
return;
}
if (beg.Equals(end)) {
phi = Math.PI/2;
theta = beg.dec;
psi = beg.ra - Math.PI/2;
length = 0.0;
} else {
Point3D beg3d = new Point3D(beg);
Point3D end3d = new Point3D(end);
Point3D tp = new Point3D();
Point spt = beg3d.cross(end3d).toSpherePoint();
Euler euler = new Euler();
euler.phi = - spt.ra - Math.PI/2;
euler.theta = spt.dec - Math.PI/2;
euler.psi = 0.0 ;
euler.psi_a = Euler.AXIS_Z;
euler.theta_a = Euler.AXIS_X;
euler.phi_a = Euler.AXIS_Z;
euler.transform(tp, beg3d);
spt = tp.toSpherePoint();
// invert
phi = spt.ra;
theta = -euler.theta;
psi = -euler.phi;
length = l;
}
}
示例8: GetSelection
public Selection GetSelection(Point point, double precision, bool inMotion = false)
{
if (point.Distance (Start) < precision) {
return new Selection (this, SelectionPosition.LineStart);
} else if (Points.Count == 2 && point.Distance (Stop) < precision) {
return new Selection (this, SelectionPosition.LineStop);
}
return null;
}