本文整理匯總了C#中System.Image.Convert方法的典型用法代碼示例。如果您正苦於以下問題:C# Image.Convert方法的具體用法?C# Image.Convert怎麽用?C# Image.Convert使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Image
的用法示例。
在下文中一共展示了Image.Convert方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Detect_objects
private bool Detect_objects(Image<Gray, Byte> Input_Image, Image<Gray, Byte> object_Image)
{
Point dftSize = new Point(Input_Image.Width + (object_Image.Width * 2), Input_Image.Height + (object_Image.Height * 2));
bool Success = false;
using (Image<Gray, Byte> pad_array = new Image<Gray, Byte>(dftSize.X, dftSize.Y))
{
//copy centre
pad_array.ROI = new Rectangle(object_Image.Width, object_Image.Height, Input_Image.Width, Input_Image.Height);
CvInvoke.cvCopy(Input_Image.Convert<Gray, Byte>(), pad_array, IntPtr.Zero);
// CvInvoke.cvMatchTemplate
//CvInvoke.cvShowImage("pad_array", pad_array);
pad_array.ROI = (new Rectangle(0, 0, dftSize.X, dftSize.Y));
using (Image<Gray, float> result_Matrix = pad_array.MatchTemplate(object_Image, TM_TYPE.CV_TM_CCOEFF_NORMED))
{
result_Matrix.ROI = new Rectangle(object_Image.Width, object_Image.Height, Input_Image.Width, Input_Image.Height);
Point[] MAX_Loc, Min_Loc;
double[] min, max;
result_Matrix.MinMax(out min, out max, out Min_Loc, out MAX_Loc);
using (Image<Gray, double> RG_Image = result_Matrix.Convert<Gray, double>().Copy())
{
//#TAG WILL NEED TO INCREASE SO THRESHOLD AT LEAST 0.8...used to have 0.7
if (max[0] > 0.85)
{
Object_Location = MAX_Loc[0];
Success = true;
}
}
}
}
return Success;
}
示例2: FacialDetection
public Image<Gray, byte> FacialDetection(Image<Gray, byte> Frame)
{
StreamReader SR = new StreamReader("CVConfig.txt");
int width = int.Parse(SR.ReadLine().Split(':')[1]);
int height = int.Parse(SR.ReadLine().Split(':')[1]);
Image<Gray, byte> Img = Frame.Convert<Gray, byte>();
using (Frame)
{
if (Frame != null)
{
// there's only one channel (greyscale), hence the zero index
//var faces = nextFrame.DetectHaarCascade(haar)[0];
Image<Gray, byte> grayframe = Frame.Convert<Gray, byte>();
var faces =
grayframe.DetectHaarCascade(
gFacedetection, 1.4, 4,
HAAR_DETECTION_TYPE.DO_CANNY_PRUNING,
new Size(Frame.Width / 8, Frame.Height / 8)
)[0];
foreach (var face in faces)
{
CvInvoke.cvSetImageROI(grayframe, face.rect);
break;
}
Img = grayframe.Clone().Resize(width, height, INTER.CV_INTER_CUBIC); ;
}
}
SR.Close();
return Img;
}
示例3: MatchChar
public double MatchChar(char a, char b)
{
Image<Bgr, Byte> pic1 = new Image<Bgr, Byte>(100, 100).Resize(matchScale, Emgu.CV.CvEnum.INTER.CV_INTER_LINEAR),
pic2 = new Image<Bgr, Byte>(100, 100).Resize(matchScale, Emgu.CV.CvEnum.INTER.CV_INTER_LINEAR);
using (var g1 = Graphics.FromImage(pic1.Bitmap)) {
g1.Clear(Color.Black);
g1.DrawString(a.ToString(), new Font("Arial", 64), Brushes.White, Point.Empty);
}
using (var g2 = Graphics.FromImage(pic2.Bitmap)) {
g2.Clear(Color.Black);
g2.DrawString(b.ToString(), new Font("Comic Sans MS", 64), Brushes.White, Point.Empty);
}
List<Point> edge1 = findEdge(pic1.Convert<Gray, Byte>()),
edge2 = findEdge(pic2.Convert<Gray, Byte>());
nsamp = Math.Min(maxsamplecount, Math.Min(edge1.Count, edge2.Count));
edge1 = edge1.Sample(nsamp);
edge2 = edge2.Sample(nsamp);
Matrix t1, t2, V1, V2;
ExtractBoundary(pic1.Convert<Gray, Byte>(), edge1, out origX, out V1, out t1);
ExtractBoundary(pic2.Convert<Gray, Byte>(), edge2, out origY, out V2, out t2);
return MatchIteration(origX, origY, V1, V2, t1, t2);
}
示例4: button1_Click
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog Openfile = new OpenFileDialog();
if (Openfile.ShowDialog() == DialogResult.OK)
{
Image<Bgr, byte> My_Image = new Image<Bgr, byte>(Openfile.FileName);
Image<Gray, byte> gray_image = My_Image.Convert<Gray, byte>();
Image<Gray, byte> eh_gray_image = My_Image.Convert<Gray, byte>();
Image<Gray, byte> smooth_gray_image = My_Image.Convert<Gray, byte>();
Image<Gray, byte> ed_gray_image = new Image<Gray, byte>(gray_image.Size);
Image<Bgr, byte> final_image = new Image<Bgr, byte>(Openfile.FileName);
MemStorage stor = new MemStorage();
List<MCvBox2D> detectedLicensePlateRegionList = new List<MCvBox2D>();
CvInvoke.cvEqualizeHist(gray_image, eh_gray_image);
CvInvoke.cvSmooth(eh_gray_image, smooth_gray_image, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_GAUSSIAN, 3, 3, 0, 0);
//CvInvoke.cvAdaptiveThreshold(smooth_gray_image, bi_gray_image, 255, Emgu.CV.CvEnum.ADAPTIVE_THRESHOLD_TYPE.CV_ADAPTIVE_THRESH_GAUSSIAN_C, Emgu.CV.CvEnum.THRESH.CV_THRESH_BINARY, 71, 1);
CvInvoke.cvCanny(smooth_gray_image, ed_gray_image, 100, 50, 3);
Contour<Point> contours = ed_gray_image.FindContours(Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE, Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_TREE, stor);
DetectPlate(contours, detectedLicensePlateRegionList);
for (int i = 0; i < detectedLicensePlateRegionList.Count; i++)
{
final_image.Draw(detectedLicensePlateRegionList[i], new Bgr(Color.Red), 2);
}
imageBox1.Image = My_Image;
imageBox2.Image = gray_image;
imageBox3.Image = eh_gray_image;
imageBox4.Image = smooth_gray_image;
imageBox5.Image = ed_gray_image;
imageBox6.Image = final_image;
}
}
示例5: DetectFace
private Bitmap DetectFace(Bitmap faceImage)
{
var image = new Image<Bgr, byte>(faceImage);
var gray = image.Convert<Gray, Byte>();
var haarCascadeFilePath = _httpContext.Server.MapPath("haarcascade_frontalface_default.xml");
var face = new HaarCascade(haarCascadeFilePath);
MCvAvgComp[][] facesDetected = gray.DetectHaarCascade(face, 1.1, 10, HAAR_DETECTION_TYPE.DO_CANNY_PRUNING, new Size(20, 20));
Image<Gray, byte> result = null;
foreach (MCvAvgComp f in facesDetected[0])
{
//draw the face detected in the 0th (gray) channel with blue color
image.Draw(f.rect, new Bgr(Color.Blue), 2);
result = image.Copy(f.rect).Convert<Gray, byte>();
break;
}
if (result != null)
{
result = result.Resize(150, 150, INTER.CV_INTER_CUBIC);
return result.Bitmap;
}
return null;
}
示例6: ProcessFrame
public void ProcessFrame(int threshold)
{
m_OriginalImage = m_Capture.QueryFrame();
m_ClippedImage = m_OriginalImage.Copy(this.RegionOfInterest);
// Make the dark portions bigger
m_ErodedImage = m_ClippedImage.Erode(1);
//Convert the image to grayscale
m_GrayImage = m_ErodedImage.Convert<Gray, Byte>();
m_BlackAndWhiteImage = m_GrayImage.ThresholdBinaryInv(new Gray(threshold), new Gray(255));
FindRectangles(m_BlackAndWhiteImage);
this.FoundRectangleCount = m_FoundRectangles.Count;
if (this.FoundRectangleCount == m_ImageModel.ExpectedRectangleCount)
{
m_ImageModel.AssignFoundRectangles(m_FoundRectangles);
m_FoundRectanglesImage = CreateRectanglesImage(m_ImageModel.GetInsideRectangles());
}
else
{
m_FoundRectanglesImage = CreateRectanglesImage(m_FoundRectangles);
}
}
示例7: DetectSkin
public override Image<Gray, byte> DetectSkin(Image<Bgr, byte> Img, IColor min, IColor max)
{
Image<Hsv, Byte> currentHsvFrame = Img.Convert<Hsv, Byte>();
Image<Gray, byte> skin = new Image<Gray, byte>(Img.Width, Img.Height);
skin = currentHsvFrame.InRange((Hsv)min, (Hsv)max);
return skin;
}
示例8: GetColorPixelMask
/// <summary>
/// Compute the red pixel mask for the given image.
/// A red pixel is a pixel where: 20 < hue < 160 AND satuation > 10
/// </summary>
/// <param name="image">The color image to find red mask from</param>
/// <returns>The red pixel mask</returns>
public Image<Gray, Byte> GetColorPixelMask(Image<Bgr, byte> image, int minHue, int maxHue, int minSat, int maxSat, int minValue, int maxValue)
{
using (Image<Hsv, Byte> hsv = image.Convert<Hsv, Byte>())
{
Image<Gray, Byte>[] channels = hsv.Split();
try
{
CvInvoke.cvInRangeS(channels[0], new MCvScalar(minHue), new MCvScalar(maxHue), channels[0]);
//CvInvoke.cvShowImage("channel 0", channels[0]);
//channels[1] is the mask for satuation of at least 10, this is mainly used to filter out white pixels
CvInvoke.cvInRangeS(channels[1], new MCvScalar(minSat), new MCvScalar(maxSat), channels[1]);
CvInvoke.cvInRangeS(channels[2], new MCvScalar(minValue), new MCvScalar(maxValue), channels[2]);
CvInvoke.cvAnd(channels[0], channels[1], channels[0], IntPtr.Zero);
CvInvoke.cvAnd(channels[0], channels[2], channels[0], IntPtr.Zero);
//CvInvoke.cvAnd(channels[0], channels[2], channels[0], IntPtr.Zero);
}
finally
{
//CvInvoke.cvShowImage("channel 1", channels[1]);
//CvInvoke.cvShowImage("channel 2", channels[2]);
channels[1].Dispose();
channels[2].Dispose();
//channels[0].Dispose();
}
return channels[0];
}
}
示例9: AddFaceToDB
/// <summary>
/// Stores a Face image and its Name in the Training Set, in MS Access Database
/// </summary>
/// <param name="ImageAsBytes"></param> Face image converted to bytes
/// <param name="FaceName"></param>the name of face set in the textbox
private void AddFaceToDB(Image InputFace, string FaceName)
{
Image<Bgr, byte> grayframe = new Image<Bgr, byte>(new Bitmap(InputFace));
Image<Gray, byte> faceGrayPic = grayframe.Convert<Gray, Byte>().Resize(64, 64, Emgu.CV.CvEnum.Inter.Cubic);
faceGrayPic.Save("trainingset/"+txtBoxFaceName.Text+".bmp");
MessageBox.Show("nailigtas");
}
示例10: colorMask
private Image<Gray, Byte> colorMask(Image<Bgr, Byte> bgrImage)
{
Image<Hsv, Byte> hsvImg = bgrImage.Convert<Hsv, Byte>();
Image<Gray, Byte>[] channels = hsvImg.Split();
Image<Gray, Byte> imghue = channels[0]; //hsv, so channels[0] is hue.
Image<Gray, Byte> imgval = channels[2]; //hsv, so channels[2] is value.
Image<Gray, Byte> imgsat = channels[1]; //hsv, so channels[1] is
minHue = hueMinTB.Value;
maxHue = hueMaxTB.Value;
minSat = satMinTB.Value;
maxSat = satMaxTB.Value;
minVal = valMinTB.Value;
maxVal = valMaxTB.Value;
//filter out all but "the color you want"...seems to be 0 to 128 ?
Image<Gray, byte> huefilter = imghue.InRange(new Gray(minHue ), new Gray(maxHue ));
Image<Gray, byte> satfilter = imgsat.InRange(new Gray(minSat ), new Gray(maxSat ));
//use the value channel to filter out all but brighter colors
//Image<Gray, byte> valfilter = imgval.InRange(new Gray(Color.Orange .GetBrightness() - 5), new Gray(Color.Orange .GetBrightness() + 5));
Image<Gray, byte> valfilter = imgval.InRange(new Gray(minVal ), new Gray(maxVal));
//now and the two to get the parts of the imaged that are colored and above some brightness.
Image<Gray, byte> detimg = huefilter.And(valfilter).And(satfilter);
return detimg;
}
示例11: UploadButton_Click
protected void UploadButton_Click(object sender, EventArgs e)
{
try
{
if (!((FileUpload1.PostedFile.ContentType == "image/jpeg") ||
(FileUpload1.PostedFile.ContentType == "image/png") ||
(FileUpload1.PostedFile.ContentType == "image/gif") ||
(FileUpload1.PostedFile.ContentType == "image/bmp"))) throw new Exception("Неизвестный тип файла");
string PhotoFolder = Request.PhysicalApplicationPath + @"\photos\";
if (!Directory.Exists(PhotoFolder)) Directory.CreateDirectory(PhotoFolder);
string extention = Path.GetExtension(FileUpload1.FileName);
string uniqueName = Path.ChangeExtension(FileUpload1.FileName, DateTime.Now.Ticks.ToString());
string upFile = Path.Combine(PhotoFolder, uniqueName + extention);
FileUpload1.SaveAs(upFile);
//Распознование лиц
HaarCascade haarCascade = new HaarCascade(Request.PhysicalApplicationPath + @"\haarcascade_frontalface_alt2.xml");
Image<Bgr, Byte> image = new Image<Bgr, Byte>(upFile);
Image<Gray, Byte> grayImage = image.Convert<Gray, Byte>();
Bitmap srcImage = image.ToBitmap();
var detectedFaces = grayImage.DetectHaarCascade(haarCascade)[0];
foreach (var face in detectedFaces)
{
Image<Bgr, Byte> imFace = image.Copy(face.rect);
//Пикселизация (фактор подобран эмпирически)
//при данном факторе одиноково хорошо пикселизируются и большие и маленькие лица
double factor = 0.02 + (double)10 / (double)face.rect.Height;
imFace = imFace.Resize(factor, 0);
imFace = imFace.Resize(1 / factor, 0);
Bitmap faceBitmap = imFace.ToBitmap();
using (Graphics grD = Graphics.FromImage(srcImage))
{
grD.DrawImage(faceBitmap, new Point(face.rect.Left, face.rect.Top));
}
}
string uniqueName_processed = uniqueName + "_processed";
srcImage.Save(Path.Combine(PhotoFolder, uniqueName_processed + extention));
imgTitle.Visible = true;
Image1.ImageUrl = "photos/" + uniqueName_processed + extention;
}
catch (Exception ex)
{
Session["ErrorMsg"] = ex.Message;
Response.Redirect("~/error.aspx", true);
}
}
示例12: GetRedPixelMask
/// <summary>
/// Compute the red pixel mask for the given image.
/// A red pixel is a pixel where: 20 < hue < 160 AND satuation > 10
/// </summary>
/// <param name="image">The color image to find red mask from</param>
/// <returns>The red pixel mask</returns>
public static Image<Gray, Byte> GetRedPixelMask(Image<Bgr, byte> image)
{
using (Image<Hsv, Byte> hsv = image.Convert<Hsv, Byte>())
{
Image<Gray, Byte>[] channels = hsv.Split();
try
{
//channels[0] is the mask for hue less than 20 or larger than 160
CvInvoke.cvInRangeS(channels[0], new MCvScalar(MaskHueLow), new MCvScalar(MaskHueHigh), channels[0]);
channels[0]._Not();
//channels[1] is the mask for satuation of at least 10, this is mainly used to filter out white pixels
channels[1]._ThresholdBinary(new Gray(10), new Gray(255.0));
CvInvoke.cvAnd(channels[0], channels[1], channels[0], IntPtr.Zero);
}
finally
{
channels[1].Dispose();
channels[2].Dispose();
}
return channels[0];
}
}
示例13: Run
public void Run()
{
base.Output = new cImage(Input.Width, Input.Height, Input.Depth, base.ListChannelsToBeProcessed.Count);
for (int IdxChannel = 0; IdxChannel < base.ListChannelsToBeProcessed.Count; IdxChannel++)
{
int CurrentChannel = base.ListChannelsToBeProcessed[IdxChannel];
Image<Gray, float> inputImage = new Image<Gray, float>(Input.Width, Input.Height);
for (int j = 0; j < Input.Height; j++)
for (int i = 0; i < Input.Width; i++)
inputImage.Data[j, i, 0] = Input.SingleChannelImage[CurrentChannel].Data[i + j * Input.Width];
Image<Gray, float> ProcessedImage = new Image<Gray, float>(inputImage.Width, inputImage.Height);
Emgu.CV.Image<Gray, byte> gray = inputImage.Convert<Gray, byte>();//convert to grayscale
IntPtr dsti = Emgu.CV.CvInvoke.cvCreateImage(Emgu.CV.CvInvoke.cvGetSize(gray), Emgu.CV.CvEnum.IplDepth.IplDepth32F, 1);
//TODO: Has to be checked!!!!
Emgu.CV.CvInvoke.DistanceTransform(gray, ProcessedImage,null, DistanceType, MaskSize, DistLabelType.CComp);
this.Output.SingleChannelImage[IdxChannel].SetNewDataFromOpenCV(ProcessedImage);
}
return;
}
示例14: BoardButton_Click
private void BoardButton_Click(object sender, RoutedEventArgs e)
{
string[] args = Environment.GetCommandLineArgs();
Image<Hsv, byte> img = new Image<Hsv, byte>(args[1]);
Image<Gray, byte> blue = ImageTools.FilterColor(img, new Hsv(90, 90, 50), new Hsv(120, 255, 255));
Image<Gray, byte> green = ImageTools.FilterColor(img, new Hsv(35, 70, 35), new Hsv(90, 255, 255));
Image<Gray, byte> yellow = ImageTools.FilterColor(img, new Hsv(10, 70, 127), new Hsv(35, 255, 255));
Image<Gray, byte> red = ImageTools.FilterColor(
img,
new KeyValuePair<Hsv, Hsv>[]{
new KeyValuePair<Hsv,Hsv>(new Hsv(0, 85, 80), new Hsv(12, 255, 255)),
new KeyValuePair<Hsv,Hsv>(new Hsv(150,85,80), new Hsv(179,255,255))
}
);
DetectionData ddb = ImageTools.DetectSquares(blue);
DetectionData ddr = ImageTools.DetectSquares(red);
DetectionData ddg = ImageTools.DetectSquares(green);
DetectionData ddy = ImageTools.DetectSquares(yellow);
ddb.RemoveNoises();
ddr.RemoveNoises();
ddg.RemoveNoises();
ddy.RemoveNoises();
ddb.AddColor(ddr);
ddb.AddColor(ddg);
ddb.AddColor(ddy);
var board = ddb.CreateBoard();
var di = ddb.DrawDetection().Bitmap;
MessageBox.Show("Detected board: " + board.Height + "x" + board.Width);
ImageTools.ShowInNamedWindow(img.Convert<Bgr, byte>(), "Original");
}
示例15: LineDetectionFromFileTesting
public LineDetectionFromFileTesting()
{
viewer = new ImageViewer(); //create an image viewer
//Convert the image to grayscale and filter out the noise
// gray = new Image<Gray, Byte>("C:/RoboSub/RoboImagesTest2/92c.png");
fileImage = new Image<Bgr, Byte>(fileName);
fileImage = fileImage.Resize(300, 200, Emgu.CV.CvEnum.INTER.CV_INTER_AREA, true);
img = fileImage.Clone();
gray = img.Convert<Gray, Byte>();
// img = new Image<Bgr, Byte>("C:/RoboSub/RoboImagesTest2/92c.png");
viewer.Size = new Size(fileImage.Width * 3, fileImage.Height * 3);
Thread input = new Thread(getKeyboardInput);
input.Start();
Thread test = new Thread(testShapeDetection);
test.Start();
Application.Idle += new EventHandler(delegate(object sender, EventArgs e)
{
//testShapeDetection();
});
viewer.ShowDialog();
test.Abort();
input.Abort();
}