當前位置: 首頁>>代碼示例>>C#>>正文


C# ECPoint.Multiply方法代碼示例

本文整理匯總了C#中Org.BouncyCastle.Math.EC.ECPoint.Multiply方法的典型用法代碼示例。如果您正苦於以下問題:C# ECPoint.Multiply方法的具體用法?C# ECPoint.Multiply怎麽用?C# ECPoint.Multiply使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在Org.BouncyCastle.Math.EC.ECPoint的用法示例。


在下文中一共展示了ECPoint.Multiply方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: SumOfTwoMultiplies

        public static ECPoint SumOfTwoMultiplies(ECPoint P, BigInteger a, ECPoint Q, BigInteger b)
        {
            ECCurve cp = P.Curve;
            Q = ImportPoint(cp, Q);

            // Point multiplication for Koblitz curves (using WTNAF) beats Shamir's trick
            if (cp is F2mCurve)
            {
                F2mCurve f2mCurve = (F2mCurve) cp;
                if (f2mCurve.IsKoblitz)
                {
                    return P.Multiply(a).Add(Q.Multiply(b));
                }
            }

            return ImplShamirsTrickWNaf(P, a, Q, b);
        }
開發者ID:kueiwa,項目名稱:ripple-cs,代碼行數:17,代碼來源:ECAlgorithms.cs

示例2: SumOfTwoMultiplies

        public static ECPoint SumOfTwoMultiplies(ECPoint p, IBigInteger a, ECPoint q, IBigInteger b)
        {
            var c = p.Curve;
            if (!c.Equals(q.Curve))
                throw new ArgumentException("P and Q must be on same curve");

            // Point multiplication for Koblitz curves (using WTNAF) beats Shamir's trick
            var f2MCurve = c as F2MCurve;
            if (f2MCurve != null)
            {
                if (f2MCurve.IsKoblitz)
                {
                    return p.Multiply(a).Add(q.Multiply(b));
                }
            }

            return ImplShamirsTrick(p, a, q, b);
        }
開發者ID:sanyaade-iot,項目名稱:Schmoose-BouncyCastle,代碼行數:18,代碼來源:ECAlgorithms.cs

示例3: SumOfTwoMultiplies

		public static ECPoint SumOfTwoMultiplies(ECPoint P, BigInteger a,
			ECPoint Q, BigInteger b)
		{
			ECCurve c = P.Curve;
			if (!c.Equals(Q.Curve))
				throw new ArgumentException("P and Q must be on same curve");

			// Point multiplication for Koblitz curves (using WTNAF) beats Shamir's trick
			if (c is F2mCurve)
			{
				F2mCurve f2mCurve = (F2mCurve) c;
				if (f2mCurve.IsKoblitz)
				{
					return P.Multiply(a).Add(Q.Multiply(b));
				}
			}

			return ImplShamirsTrick(P, a, Q, b);
		}
開發者ID:htlp,項目名稱:itextsharp,代碼行數:19,代碼來源:ECAlgorithms.cs

示例4: SumOfTwoMultiplies

        public static ECPoint SumOfTwoMultiplies(ECPoint P, BigInteger a, ECPoint Q, BigInteger b)
        {
            ECCurve cp = P.Curve;
            Q = ImportPoint(cp, Q);

            // Point multiplication for Koblitz curves (using WTNAF) beats Shamir's trick
            if (cp is F2mCurve)
            {
                F2mCurve f2mCurve = (F2mCurve) cp;
                if (f2mCurve.IsKoblitz)
                {
                    return P.Multiply(a).Add(Q.Multiply(b));
                }
            }

            GlvEndomorphism glvEndomorphism = cp.GetEndomorphism() as GlvEndomorphism;
            if (glvEndomorphism != null)
            {
                return ImplSumOfMultipliesGlv(new ECPoint[] { P, Q }, new BigInteger[] { a, b }, glvEndomorphism);
            }

            return ImplShamirsTrickWNaf(P, a, Q, b);
        }
開發者ID:MBrekhof,項目名稱:pleiobox-clients,代碼行數:23,代碼來源:ECAlgorithms.cs

示例5: PrivHexToPubHex

        public static string PrivHexToPubHex(string PrivHex, ECPoint point)
        {
            byte[] hex = ValidateAndGetHexPrivateKey(0x00, PrivHex, 33);
            if (hex == null) throw new ApplicationException("Invalid private hex key");
            Org.BouncyCastle.Math.BigInteger Db = new Org.BouncyCastle.Math.BigInteger(hex);
            ECPoint dd = point.Multiply(Db);

            byte[] pubaddr = PubKeyToByteArray(dd);

            return ByteArrayToString(pubaddr);
        }
開發者ID:Groestlcoin,項目名稱:Groestlcoin-Address-Utility,代碼行數:11,代碼來源:Bitcoin.cs

示例6: ImplTestMultiplyAll

        /**
         * Checks, if the point multiplication algorithm of the given point yields
         * the same result as point multiplication done by the reference
         * implementation given in <code>multiply()</code>. This method tests
         * multiplication of <code>p</code> by every number of bitlength
         * <code>numBits</code> or less.
         *
         * @param p
         *            The point to be multiplied.
         * @param numBits
         *            Try every multiplier up to this bitlength
         */
        private void ImplTestMultiplyAll(ECPoint p, int numBits)
        {
            BigInteger bound = BigInteger.One.ShiftLeft(numBits);
            BigInteger k = BigInteger.Zero;

            do
            {
                ECPoint reff = Multiply(p, k);
                ECPoint q = p.Multiply(k);
                AssertPointsEqual("ECPoint.Multiply is incorrect", reff, q);
                k = k.Add(BigInteger.One);
            }
            while (k.CompareTo(bound) < 0);
        }
開發者ID:jesusgarza,項目名稱:bc-csharp,代碼行數:26,代碼來源:ECPointTest.cs

示例7: ImplTestMultiply

 /**
  * Checks, if the point multiplication algorithm of the given point yields
  * the same result as point multiplication done by the reference
  * implementation given in <code>multiply()</code>. This method chooses a
  * random number by which the given point <code>p</code> is multiplied.
  *
  * @param p
  *            The point to be multiplied.
  * @param numBits
  *            The bitlength of the random number by which <code>p</code>
  *            is multiplied.
  */
 private void ImplTestMultiply(ECPoint p, int numBits)
 {
     BigInteger k = new BigInteger(numBits, secRand);
     ECPoint reff = Multiply(p, k);
     ECPoint q = p.Multiply(k);
     AssertPointsEqual("ECPoint.Multiply is incorrect", reff, q);
 }
開發者ID:jesusgarza,項目名稱:bc-csharp,代碼行數:19,代碼來源:ECPointTest.cs

示例8: ImplTestAllPoints

        /**
         * Goes through all points on an elliptic curve and checks, if adding a
         * point <code>k</code>-times is the same as multiplying the point by
         * <code>k</code>, for all <code>k</code>. Should be called for points
         * on very small elliptic curves only.
         *
         * @param p
         *            The base point on the elliptic curve.
         * @param infinity
         *            The point at infinity on the elliptic curve.
         */
        private void ImplTestAllPoints(ECPoint p, ECPoint infinity)
        {
            ECPoint adder = infinity;
            ECPoint multiplier = infinity;

            BigInteger i = BigInteger.One;
            do
            {
                adder = adder.Add(p);
                multiplier = p.Multiply(i);
                AssertPointsEqual("Results of Add() and Multiply() are inconsistent " + i, adder, multiplier);
                i = i.Add(BigInteger.One);
            }
            while (!(adder.Equals(infinity)));
        }
開發者ID:jesusgarza,項目名稱:bc-csharp,代碼行數:26,代碼來源:ECPointTest.cs

示例9: CalculateAgreement

		internal static BigInteger CalculateAgreement (ECPoint q, BigInteger d)
		{
			ECPoint p = q.Multiply (d);

			// if ( p.IsInfinity ) throw new Exception("d*Q == infinity");

			return p.X.ToBigInteger();
		}
開發者ID:VimalKumarS,項目名稱:mono-tls,代碼行數:8,代碼來源:EllipticCurveKeyExchange.cs

示例10: RandMult

        private double RandMult(SecureRandom random, ECPoint g, BigInteger n)
        {
            BigInteger[] ks = new BigInteger[128];
            for (int i = 0; i < ks.Length; ++i)
            {
                ks[i] = new BigInteger(n.BitLength - 1, random);
            }

            int ki = 0;
            ECPoint p = g;
            for (int i = 1; i <= PRE_ROUNDS; i++)
            {
                for (int j = 0; j < MULTS_PER_ROUND; ++j)
                {
                    BigInteger k = ks[ki];
                    p = g.Multiply(k);
                    if ((ki & 1) != 0)
                    {
                        g = p;
                    }
                    if (++ki == ks.Length)
                    {
                        ki = 0;
                    }
                }
            }

            double minElapsed = Double.MaxValue, maxElapsed = Double.MinValue, totalElapsed = 0.0;

            for (int i = 1; i <= NUM_ROUNDS; i++)
            {
                long startTime = DateTimeUtilities.CurrentUnixMs();

                for (int j = 0; j < MULTS_PER_ROUND; ++j)
                {
                    BigInteger k = ks[ki];
                    p = g.Multiply(k);
                    if ((ki & 1) != 0)
                    {
                        g = p;
                    }
                    if (++ki == ks.Length)
                    {
                        ki = 0;
                    }
                }

                long endTime = DateTimeUtilities.CurrentUnixMs();

                double roundElapsed = (double)(endTime - startTime);
                minElapsed = System.Math.Min(minElapsed, roundElapsed);
                maxElapsed = System.Math.Max(maxElapsed, roundElapsed);
                totalElapsed += roundElapsed;
            }

            return (totalElapsed - minElapsed - maxElapsed) / (NUM_ROUNDS - 2) / MULTS_PER_ROUND;
        }
開發者ID:kueiwa,項目名稱:ripple-cs,代碼行數:57,代碼來源:ECPointPerformanceTest.cs

示例11: RandMult

        private double RandMult(SecureRandom random, ECPoint g, BigInteger n)
        {
            BigInteger[] ks = new BigInteger[128];
            for (int i = 0; i < ks.Length; ++i)
            {
                ks[i] = new BigInteger(n.BitLength - 1, random);
            }

            int ki = 0;
            ECPoint p = g;

            {
                long startTime = DateTimeUtilities.CurrentUnixMs();
                long goalTime = startTime + MILLIS_WARMUP;

                do
                {
                    BigInteger k = ks[ki];
                    p = g.Multiply(k);
                    if ((ki & 1) != 0)
                    {
                        g = p;
                    }
                    if (++ki == ks.Length)
                    {
                        ki = 0;
                    }
                }
                while (DateTimeUtilities.CurrentUnixMs() < goalTime);
            }

            double minRate = Double.MaxValue, maxRate = Double.MinValue, totalRate = 0.0;

            for (int i = 1; i <= NUM_ROUNDS; i++)
            {
                long startTime = DateTimeUtilities.CurrentUnixMs();
                long goalTime = startTime + MILLIS_PER_ROUND;
                long count = 0, endTime;

                do
                {
                    ++count;

                    for (int j = 0; j < MULTS_PER_CHECK; ++j)
                    {
                        BigInteger k = ks[ki];
                        p = g.Multiply(k);
                        if ((ki & 1) != 0)
                        {
                            g = p;
                        }
                        if (++ki == ks.Length)
                        {
                            ki = 0;
                        }
                    }

                    endTime = DateTimeUtilities.CurrentUnixMs();
                }
                while (endTime < goalTime);

                double roundElapsed = (double)(endTime - startTime);
                double roundRate = count * MULTS_PER_CHECK * 1000L / roundElapsed;

                minRate = System.Math.Min(minRate, roundRate);
                maxRate = System.Math.Max(maxRate, roundRate);
                totalRate += roundRate;
            }

            return (totalRate - minRate - maxRate) / (NUM_ROUNDS - 2);
        }
開發者ID:kyanha,項目名稱:bc-csharp,代碼行數:71,代碼來源:ECPointPerformanceTest.cs

示例12: implTestMultiplyAll

		/**
		 * Checks, if the point multiplication algorithm of the given point yields
		 * the same result as point multiplication done by the reference
		 * implementation given in <code>multiply()</code>. This method tests
		 * multiplication of <code>p</code> by every number of bitlength
		 * <code>numBits</code> or less.
		 *
		 * @param p
		 *            The point to be multiplied.
		 * @param numBits
		 *            Try every multiplier up to this bitlength
		 */
		private void implTestMultiplyAll(ECPoint p, int numBits)
		{
			BigInteger bound = BigInteger.Two.Pow(numBits);
			BigInteger k = BigInteger.Zero;

			do
			{
				ECPoint reff = multiply(p, k);
				ECPoint q = p.Multiply(k);
				Assert.AreEqual(reff, q, "ECPoint.multiply is incorrect");
				k = k.Add(BigInteger.One);
			}
			while (k.CompareTo(bound) < 0);
		}
開發者ID:randombit,項目名稱:hacrypto,代碼行數:26,代碼來源:ECPointTest.cs

示例13: implTestMultiply

		/**
		 * Checks, if the point multiplication algorithm of the given point yields
		 * the same result as point multiplication done by the reference
		 * implementation given in <code>multiply()</code>. This method chooses a
		 * random number by which the given point <code>p</code> is multiplied.
		 *
		 * @param p
		 *            The point to be multiplied.
		 * @param numBits
		 *            The bitlength of the random number by which <code>p</code>
		 *            is multiplied.
		 */
		private void implTestMultiply(ECPoint p, int numBits)
		{
			BigInteger k = new BigInteger(numBits, secRand);
			ECPoint reff = multiply(p, k);
			ECPoint q = p.Multiply(k);
			Assert.AreEqual(reff, q, "ECPoint.multiply is incorrect");
		}
開發者ID:randombit,項目名稱:hacrypto,代碼行數:19,代碼來源:ECPointTest.cs

示例14: implTestAllPoints

		/**
		 * Goes through all points on an elliptic curve and checks, if adding a
		 * point <code>k</code>-times is the same as multiplying the point by
		 * <code>k</code>, for all <code>k</code>. Should be called for points
		 * on very small elliptic curves only.
		 *
		 * @param p
		 *            The base point on the elliptic curve.
		 * @param infinity
		 *            The point at infinity on the elliptic curve.
		 */
		private void implTestAllPoints(ECPoint p, ECPoint infinity)
		{
			ECPoint adder = infinity;
			ECPoint multiplier = infinity;
			int i = 1;
			do
			{
				adder = adder.Add(p);
				multiplier = p.Multiply(new BigInteger(i.ToString()));
				Assert.AreEqual(adder, multiplier,
					"Results of add() and multiply() are inconsistent " + i);
				i++;
			}
			while (!(adder.Equals(infinity)));
		}
開發者ID:randombit,項目名稱:hacrypto,代碼行數:26,代碼來源:ECPointTest.cs

示例15: ExtractUsersPrivateKey

		private BigInteger ExtractUsersPrivateKey(
			ECPoint G, BigInteger N,
			string message1,
			string message2,
			BigInteger r1, BigInteger s1,
			BigInteger r2, BigInteger s2,
			BigInteger attackersPrivate, ECPoint attackersPublic,
			ECPoint usersPublic)
		{
			var m1 = new BigInteger(1, Hash(Encoding.UTF8.GetBytes(message1))); // hash of m1
			var m2 = new BigInteger(1, Hash(Encoding.UTF8.GetBytes(message2))); // hash of m2

			//calculate the result of verifying signature 1
			var w = s1.ModInverse(N);
			var u1 = m1.Multiply(w).Mod(N);
			var u2 = r1.Multiply(w).Mod(N);
			var verifyPoint = ECAlgorithms.SumOfTwoMultiplies(G, u1, usersPublic, u2).Normalize();

			//reinit K calculator to reproduce a,b,h,e
			var kCalc = new RandomDsaKCalculator();
			kCalc.Init(N, new SecureRandom(new SeededGenerator(Hash(Encoding.UTF8.GetBytes(message2)))));

			var a = kCalc.NextK();
			var b = kCalc.NextK();
			var h = kCalc.NextK();
			var e = kCalc.NextK();

			var Z1 = verifyPoint.Multiply(a).Add(verifyPoint.Multiply(attackersPrivate).Multiply(b));

			//cycle through all possible j & u
			for (int i = 0; i < 2; i++)
				for (int l = 0; l < 2; l++)
				{
					var j = new BigInteger(i.ToString());
					var u = new BigInteger(l.ToString());


					var Z2 = Z1.Add(G.Multiply(j).Multiply(h)).Add(attackersPublic.Multiply(u).Multiply(e)).Normalize();
					var zX = Z2.AffineXCoord.ToBigInteger().ToByteArray();
					var hash = Hash(zX);
					var kCandidate = new BigInteger(1, hash);
					var verifyPointCandidate = G.Multiply(kCandidate).Normalize();
					var rCandidate = verifyPointCandidate.AffineXCoord.ToBigInteger().Mod(N);

					if (rCandidate.Equals(r2)) // Gotcha!
					{
						return s2.Multiply(kCandidate).Subtract(m2).Multiply(r2.ModInverse(N)).Mod(N);
					}
				}

			return null;
		}
開發者ID:jorik041,項目名稱:Kleptography.net,代碼行數:52,代碼來源:ECDSABackdoor.cs


注:本文中的Org.BouncyCastle.Math.EC.ECPoint.Multiply方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。