本文整理匯總了C#中Org.BouncyCastle.Math.EC.ECPoint.Add方法的典型用法代碼示例。如果您正苦於以下問題:C# ECPoint.Add方法的具體用法?C# ECPoint.Add怎麽用?C# ECPoint.Add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Org.BouncyCastle.Math.EC.ECPoint
的用法示例。
在下文中一共展示了ECPoint.Add方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: ImplShamirsTrick
private static ECPoint ImplShamirsTrick(ECPoint p, IBigInteger k, ECPoint q, IBigInteger l)
{
var m = System.Math.Max(k.BitLength, l.BitLength);
var z = p.Add(q);
var r = p.Curve.Infinity;
for (var i = m - 1; i >= 0; --i)
{
r = r.Twice();
if (k.TestBit(i))
{
r = r.Add(l.TestBit(i) ? z : p);
}
else
{
if (l.TestBit(i))
{
r = r.Add(q);
}
}
}
return r;
}
示例2: ImplShamirsTrick
private static ECPoint ImplShamirsTrick(ECPoint P, BigInteger k,
ECPoint Q, BigInteger l)
{
int m = System.Math.Max(k.BitLength, l.BitLength);
ECPoint Z = P.Add(Q);
ECPoint R = P.Curve.Infinity;
for (int i = m - 1; i >= 0; --i)
{
R = R.Twice();
if (k.TestBit(i))
{
if (l.TestBit(i))
{
R = R.Add(Z);
}
else
{
R = R.Add(P);
}
}
else
{
if (l.TestBit(i))
{
R = R.Add(Q);
}
}
}
return R;
}
示例3: ImplTestAddSubtract
/**
* Tests <code>ECPoint.add()</code> and <code>ECPoint.subtract()</code>
* for the given point and the given point at infinity.
*
* @param p
* The point on which the tests are performed.
* @param infinity
* The point at infinity on the same curve as <code>p</code>.
*/
private void ImplTestAddSubtract(ECPoint p, ECPoint infinity)
{
AssertPointsEqual("Twice and Add inconsistent", p.Twice(), p.Add(p));
AssertPointsEqual("Twice p - p is not p", p, p.Twice().Subtract(p));
AssertPointsEqual("TwicePlus(p, -p) is not p", p, p.TwicePlus(p.Negate()));
AssertPointsEqual("p - p is not infinity", infinity, p.Subtract(p));
AssertPointsEqual("p plus infinity is not p", p, p.Add(infinity));
AssertPointsEqual("infinity plus p is not p", p, infinity.Add(p));
AssertPointsEqual("infinity plus infinity is not infinity ", infinity, infinity.Add(infinity));
AssertPointsEqual("Twice infinity is not infinity ", infinity, infinity.Twice());
}
示例4: ImplTestAdd
/**
* Tests <code>ECPoint.add()</code> against literature values.
*
* @param p
* The array of literature values.
* @param infinity
* The point at infinity on the respective curve.
*/
private void ImplTestAdd(ECPoint[] p, ECPoint infinity)
{
AssertPointsEqual("p0 plus p1 does not equal p2", p[2], p[0].Add(p[1]));
AssertPointsEqual("p1 plus p0 does not equal p2", p[2], p[1].Add(p[0]));
for (int i = 0; i < p.Length; i++)
{
AssertPointsEqual("Adding infinity failed", p[i], p[i].Add(infinity));
AssertPointsEqual("Adding to infinity failed", p[i], infinity.Add(p[i]));
}
}
示例5: ImplShamirsTrickJsf
internal static ECPoint ImplShamirsTrickJsf(ECPoint P, BigInteger k, ECPoint Q, BigInteger l)
{
ECCurve curve = P.Curve;
ECPoint infinity = curve.Infinity;
// TODO conjugate co-Z addition (ZADDC) can return both of these
ECPoint PaddQ = P.Add(Q);
ECPoint PsubQ = P.Subtract(Q);
ECPoint[] points = new ECPoint[] { Q, PsubQ, P, PaddQ };
curve.NormalizeAll(points);
ECPoint[] table = new ECPoint[] {
points[3].Negate(), points[2].Negate(), points[1].Negate(),
points[0].Negate(), infinity, points[0],
points[1], points[2], points[3] };
byte[] jsf = WNafUtilities.GenerateJsf(k, l);
ECPoint R = infinity;
int i = jsf.Length;
while (--i >= 0)
{
int jsfi = jsf[i];
// NOTE: The shifting ensures the sign is extended correctly
int kDigit = ((jsfi << 24) >> 28), lDigit = ((jsfi << 28) >> 28);
int index = 4 + (kDigit * 3) + lDigit;
R = R.TwicePlus(table[index]);
}
return R;
}
示例6: implTestAddSubtract
/**
* Tests <code>ECPoint.add()</code> and <code>ECPoint.subtract()</code>
* for the given point and the given point at infinity.
*
* @param p
* The point on which the tests are performed.
* @param infinity
* The point at infinity on the same curve as <code>p</code>.
*/
private void implTestAddSubtract(ECPoint p, ECPoint infinity)
{
Assert.AreEqual(p.Twice(), p.Add(p), "Twice and Add inconsistent");
Assert.AreEqual(p, p.Twice().Subtract(p), "Twice p - p is not p");
Assert.AreEqual(infinity, p.Subtract(p), "p - p is not infinity");
Assert.AreEqual(p, p.Add(infinity), "p plus infinity is not p");
Assert.AreEqual(p, infinity.Add(p), "infinity plus p is not p");
Assert.AreEqual(infinity, infinity.Add(infinity), "infinity plus infinity is not infinity ");
}
示例7: Add
public override ECPoint Add(ECPoint b)
{
if (this.IsInfinity)
return b;
if (b.IsInfinity)
return this;
ECCurve curve = this.Curve;
int coord = curve.CoordinateSystem;
ECFieldElement X1 = this.RawXCoord;
ECFieldElement X2 = b.RawXCoord;
switch (coord)
{
case ECCurve.COORD_AFFINE:
{
ECFieldElement Y1 = this.RawYCoord;
ECFieldElement Y2 = b.RawYCoord;
ECFieldElement dx = X1.Add(X2), dy = Y1.Add(Y2);
if (dx.IsZero)
{
if (dy.IsZero)
{
return Twice();
}
return curve.Infinity;
}
ECFieldElement L = dy.Divide(dx);
ECFieldElement X3 = L.Square().Add(L).Add(dx).Add(curve.A);
ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
return new F2mPoint(curve, X3, Y3, IsCompressed);
}
case ECCurve.COORD_HOMOGENEOUS:
{
ECFieldElement Y1 = this.RawYCoord, Z1 = this.RawZCoords[0];
ECFieldElement Y2 = b.RawYCoord, Z2 = b.RawZCoords[0];
bool Z1IsOne = Z1.IsOne;
ECFieldElement U1 = Y2, V1 = X2;
if (!Z1IsOne)
{
U1 = U1.Multiply(Z1);
V1 = V1.Multiply(Z1);
}
bool Z2IsOne = Z2.IsOne;
ECFieldElement U2 = Y1, V2 = X1;
if (!Z2IsOne)
{
U2 = U2.Multiply(Z2);
V2 = V2.Multiply(Z2);
}
ECFieldElement U = U1.Add(U2);
ECFieldElement V = V1.Add(V2);
if (V.IsZero)
{
if (U.IsZero)
{
return Twice();
}
return curve.Infinity;
}
ECFieldElement VSq = V.Square();
ECFieldElement VCu = VSq.Multiply(V);
ECFieldElement W = Z1IsOne ? Z2 : Z2IsOne ? Z1 : Z1.Multiply(Z2);
ECFieldElement uv = U.Add(V);
ECFieldElement A = uv.MultiplyPlusProduct(U, VSq, curve.A).Multiply(W).Add(VCu);
ECFieldElement X3 = V.Multiply(A);
ECFieldElement VSqZ2 = Z2IsOne ? VSq : VSq.Multiply(Z2);
ECFieldElement Y3 = U.MultiplyPlusProduct(X1, V, Y1).MultiplyPlusProduct(VSqZ2, uv, A);
ECFieldElement Z3 = VCu.Multiply(W);
return new F2mPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed);
}
case ECCurve.COORD_LAMBDA_PROJECTIVE:
{
if (X1.IsZero)
{
if (X2.IsZero)
return curve.Infinity;
return b.Add(this);
}
ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
bool Z1IsOne = Z1.IsOne;
ECFieldElement U2 = X2, S2 = L2;
//.........這裏部分代碼省略.........