本文整理匯總了C#中Microsoft.Z3.Context.MkLe方法的典型用法代碼示例。如果您正苦於以下問題:C# Context.MkLe方法的具體用法?C# Context.MkLe怎麽用?C# Context.MkLe使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Microsoft.Z3.Context
的用法示例。
在下文中一共展示了Context.MkLe方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Run
public void Run()
{
Dictionary<string, string> settings = new Dictionary<string, string>() { { "AUTO_CONFIG", "true" }, { "MODEL", "true" } };
using (Context ctx = new Context(settings))
{
IntExpr a = ctx.MkIntConst("a");
IntExpr b = ctx.MkIntConst("b");
IntExpr c = ctx.MkIntConst("c");
RealExpr d = ctx.MkRealConst("d");
RealExpr e = ctx.MkRealConst("e");
BoolExpr q = ctx.MkAnd(
ctx.MkGt(a, ctx.MkAdd(b, ctx.MkInt(2))),
ctx.MkEq(a, ctx.MkAdd(ctx.MkMul(ctx.MkInt(2), c), ctx.MkInt(10))),
ctx.MkLe(ctx.MkAdd(c, b), ctx.MkInt(1000)),
ctx.MkGe(d, e));
Solver s = ctx.MkSolver();
s.Assert(q);
Console.WriteLine(s.Check());
Console.WriteLine(s.Model);
}
}
示例2: Run
public void Run()
{
Dictionary<string, string> cfg = new Dictionary<string, string>() {
{ "AUTO_CONFIG", "true" } };
using (Context ctx = new Context(cfg))
{
ArithExpr[] Q = new ArithExpr[8];
for (uint i = 0; i < 8; i++)
Q[i] = ctx.MkIntConst(string.Format("Q_{0}", i + 1));
BoolExpr[] val_c = new BoolExpr[8];
for (uint i = 0; i < 8; i++)
val_c[i] = ctx.MkAnd(ctx.MkLe(ctx.MkInt(1), Q[i]),
ctx.MkLe(Q[i], ctx.MkInt(8)));
BoolExpr col_c = ctx.MkDistinct(Q);
BoolExpr[][] diag_c = new BoolExpr[8][];
for (uint i = 0; i < 8; i++)
{
diag_c[i] = new BoolExpr[i];
for (uint j = 0; j < i; j++)
diag_c[i][j] = (BoolExpr)ctx.MkITE(ctx.MkEq(ctx.MkInt(i), ctx.MkInt(j)),
ctx.MkTrue(),
ctx.MkAnd(ctx.MkNot(ctx.MkEq(ctx.MkSub(Q[i], Q[j]),
ctx.MkSub(ctx.MkInt(i), ctx.MkInt(j)))),
ctx.MkNot(ctx.MkEq(ctx.MkSub(Q[i], Q[j]),
ctx.MkSub(ctx.MkInt(j), ctx.MkInt(i))))));
}
Solver s = ctx.MkSolver();
s.Assert(val_c);
s.Assert(col_c);
foreach (var c in diag_c)
s.Assert(c);
Console.WriteLine(s.Check());
Console.WriteLine(s.Model);
}
}
示例3: ProveExample2
public static void ProveExample2(Context ctx)
{
Console.WriteLine("ProveExample2");
/* declare function g */
Sort I = ctx.IntSort;
FuncDecl g = ctx.MkFuncDecl("g", I, I);
/* create x, y, and z */
IntExpr x = ctx.MkIntConst("x");
IntExpr y = ctx.MkIntConst("y");
IntExpr z = ctx.MkIntConst("z");
/* create gx, gy, gz */
Expr gx = ctx.MkApp(g, x);
Expr gy = ctx.MkApp(g, y);
Expr gz = ctx.MkApp(g, z);
/* create zero */
IntExpr zero = ctx.MkInt(0);
/* assert not(g(g(x) - g(y)) = g(z)) */
ArithExpr gx_gy = ctx.MkSub((IntExpr)gx, (IntExpr)gy);
Expr ggx_gy = ctx.MkApp(g, gx_gy);
BoolExpr eq = ctx.MkEq(ggx_gy, gz);
BoolExpr c1 = ctx.MkNot(eq);
/* assert x + z <= y */
ArithExpr x_plus_z = ctx.MkAdd(x, z);
BoolExpr c2 = ctx.MkLe(x_plus_z, y);
/* assert y <= x */
BoolExpr c3 = ctx.MkLe(y, x);
/* prove z < 0 */
BoolExpr f = ctx.MkLt(z, zero);
Console.WriteLine("prove: not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < 0");
Prove(ctx, f, c1, c2, c3);
/* disprove z < -1 */
IntExpr minus_one = ctx.MkInt(-1);
f = ctx.MkLt(z, minus_one);
Console.WriteLine("disprove: not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < -1");
Disprove(ctx, f, c1, c2, c3);
}
示例4: SudokuExample
/// <summary>
/// Sudoku solving example.
/// </summary>
static void SudokuExample(Context ctx)
{
Console.WriteLine("SudokuExample");
// 9x9 matrix of integer variables
IntExpr[][] X = new IntExpr[9][];
for (uint i = 0; i < 9; i++)
{
X[i] = new IntExpr[9];
for (uint j = 0; j < 9; j++)
X[i][j] = (IntExpr)ctx.MkConst(ctx.MkSymbol("x_" + (i + 1) + "_" + (j + 1)), ctx.IntSort);
}
// each cell contains a value in {1, ..., 9}
Expr[][] cells_c = new Expr[9][];
for (uint i = 0; i < 9; i++)
{
cells_c[i] = new BoolExpr[9];
for (uint j = 0; j < 9; j++)
cells_c[i][j] = ctx.MkAnd(ctx.MkLe(ctx.MkInt(1), X[i][j]),
ctx.MkLe(X[i][j], ctx.MkInt(9)));
}
// each row contains a digit at most once
BoolExpr[] rows_c = new BoolExpr[9];
for (uint i = 0; i < 9; i++)
rows_c[i] = ctx.MkDistinct(X[i]);
// each column contains a digit at most once
BoolExpr[] cols_c = new BoolExpr[9];
for (uint j = 0; j < 9; j++)
{
IntExpr[] column = new IntExpr[9];
for (uint i = 0; i < 9; i++)
column[i] = X[i][j];
cols_c[j] = ctx.MkDistinct(column);
}
// each 3x3 square contains a digit at most once
BoolExpr[][] sq_c = new BoolExpr[3][];
for (uint i0 = 0; i0 < 3; i0++)
{
sq_c[i0] = new BoolExpr[3];
for (uint j0 = 0; j0 < 3; j0++)
{
IntExpr[] square = new IntExpr[9];
for (uint i = 0; i < 3; i++)
for (uint j = 0; j < 3; j++)
square[3 * i + j] = X[3 * i0 + i][3 * j0 + j];
sq_c[i0][j0] = ctx.MkDistinct(square);
}
}
BoolExpr sudoku_c = ctx.MkTrue();
foreach (BoolExpr[] t in cells_c)
sudoku_c = ctx.MkAnd(ctx.MkAnd(t), sudoku_c);
sudoku_c = ctx.MkAnd(ctx.MkAnd(rows_c), sudoku_c);
sudoku_c = ctx.MkAnd(ctx.MkAnd(cols_c), sudoku_c);
foreach (BoolExpr[] t in sq_c)
sudoku_c = ctx.MkAnd(ctx.MkAnd(t), sudoku_c);
// sudoku instance, we use '0' for empty cells
int[,] instance = {{0,0,0,0,9,4,0,3,0},
{0,0,0,5,1,0,0,0,7},
{0,8,9,0,0,0,0,4,0},
{0,0,0,0,0,0,2,0,8},
{0,6,0,2,0,1,0,5,0},
{1,0,2,0,0,0,0,0,0},
{0,7,0,0,0,0,5,2,0},
{9,0,0,0,6,5,0,0,0},
{0,4,0,9,7,0,0,0,0}};
BoolExpr instance_c = ctx.MkTrue();
for (uint i = 0; i < 9; i++)
for (uint j = 0; j < 9; j++)
instance_c = ctx.MkAnd(instance_c,
(BoolExpr)
ctx.MkITE(ctx.MkEq(ctx.MkInt(instance[i, j]), ctx.MkInt(0)),
ctx.MkTrue(),
ctx.MkEq(X[i][j], ctx.MkInt(instance[i, j]))));
Solver s = ctx.MkSolver();
s.Assert(sudoku_c);
s.Assert(instance_c);
if (s.Check() == Status.SATISFIABLE)
{
Model m = s.Model;
Expr[,] R = new Expr[9, 9];
for (uint i = 0; i < 9; i++)
for (uint j = 0; j < 9; j++)
R[i, j] = m.Evaluate(X[i][j]);
Console.WriteLine("Sudoku solution:");
for (uint i = 0; i < 9; i++)
{
for (uint j = 0; j < 9; j++)
//.........這裏部分代碼省略.........
示例5: PushPopExample1
/// <summary>
/// Show how push & pop can be used to create "backtracking" points.
/// </summary>
/// <remarks>This example also demonstrates how big numbers can be
/// created in ctx.</remarks>
public static void PushPopExample1(Context ctx)
{
Console.WriteLine("PushPopExample1");
/* create a big number */
IntSort int_type = ctx.IntSort;
IntExpr big_number = ctx.MkInt("1000000000000000000000000000000000000000000000000000000");
/* create number 3 */
IntExpr three = (IntExpr)ctx.MkNumeral("3", int_type);
/* create x */
IntExpr x = ctx.MkIntConst("x");
Solver solver = ctx.MkSolver();
/* assert x >= "big number" */
BoolExpr c1 = ctx.MkGe(x, big_number);
Console.WriteLine("assert: x >= 'big number'");
solver.Assert(c1);
/* create a backtracking point */
Console.WriteLine("push");
solver.Push();
/* assert x <= 3 */
BoolExpr c2 = ctx.MkLe(x, three);
Console.WriteLine("assert: x <= 3");
solver.Assert(c2);
/* context is inconsistent at this point */
if (solver.Check() != Status.UNSATISFIABLE)
throw new TestFailedException();
/* backtrack: the constraint x <= 3 will be removed, since it was
asserted after the last ctx.Push. */
Console.WriteLine("pop");
solver.Pop(1);
/* the context is consistent again. */
if (solver.Check() != Status.SATISFIABLE)
throw new TestFailedException();
/* new constraints can be asserted... */
/* create y */
IntExpr y = ctx.MkIntConst("y");
/* assert y > x */
BoolExpr c3 = ctx.MkGt(y, x);
Console.WriteLine("assert: y > x");
solver.Assert(c3);
/* the context is still consistent. */
if (solver.Check() != Status.SATISFIABLE)
throw new TestFailedException();
}
示例6: Clique
protected void Clique(Context ctx, Edge[] edges, uint n)
{
uint num = 0;
foreach (Edge e in edges)
{
if (e.v0 >= num)
num = e.v0 + 1;
if (e.v1 >= num)
num = e.v1 + 1;
}
Solver S = ctx.MkSolver();
IntExpr [] In = new IntExpr[num];
for (uint i = 0; i < num; i++)
{
In[i] = ctx.MkIntConst(String.Format("in_{0}", i));
S.Assert(ctx.MkLe(ctx.MkInt(0), In[i]));
S.Assert(ctx.MkLe(In[i], ctx.MkInt(1)));
}
ArithExpr sum = ctx.MkInt(0);
foreach (IntExpr e in In)
sum = ctx.MkAdd(sum, e);
S.Assert(ctx.MkGe(sum, ctx.MkInt(n)));
IntNum[][] matrix = new IntNum[num][];
for (uint i = 0; i < num; i++)
{
matrix[i] = new IntNum[i];
for (uint j = 0; j < i; j++)
matrix[i][j] = ctx.MkInt(0);
}
foreach (Edge e in edges)
{
uint s = e.v0;
uint t = e.v1;
if (s < t) {
s = e.v1;
t = e.v0;
}
matrix[s][t] = ctx.MkInt(1);
}
for (uint i = 0; i < num; i++)
for (uint j = 0; j < i; j++)
if (i != j)
if (matrix[i][j].Int == 0)
S.Assert(ctx.MkOr(ctx.MkEq(In[i], ctx.MkInt(0)),
ctx.MkEq(In[j], ctx.MkInt(0))));
Status r = S.Check();
if (r == Status.UNSATISFIABLE)
Console.WriteLine("no solution");
else if (r == Status.UNKNOWN)
{
Console.Write("failed");
Console.WriteLine(S.ReasonUnknown);
}
else
{
Console.WriteLine("solution found");
Model m = S.Model;
Console.Write("{ ");
foreach (FuncDecl cfd in m.ConstDecls)
{
IntNum q = (IntNum)m.ConstInterp(cfd);
if (q.Int == 1)
Console.Write(" " + cfd.Name);
}
Console.WriteLine(" }");
Console.Write("{ ");
for (uint i = 0; i < num; i++)
{
IntNum q = (IntNum)m.Evaluate(In[i]);
if (q.Int == 1)
Console.Write(" " + In[i]);
}
Console.WriteLine(" }");
}
}
示例7: toZ3Bool
public override BoolExpr toZ3Bool(Context ctx)
{
switch (this.comparison_operator)
{
case ComparisonOperator.EQ: return ctx.MkEq(this.arithmetic_operand1.toZ3Int(ctx), this.arithmetic_operand2.toZ3Int(ctx));
case ComparisonOperator.NEQ: return ctx.MkNot(ctx.MkEq(this.arithmetic_operand1.toZ3Int(ctx), this.arithmetic_operand2.toZ3Int(ctx)));
case ComparisonOperator.LEQ: return ctx.MkLe(this.arithmetic_operand1.toZ3Int(ctx), this.arithmetic_operand2.toZ3Int(ctx));
case ComparisonOperator.LT: return ctx.MkLt(this.arithmetic_operand1.toZ3Int(ctx), this.arithmetic_operand2.toZ3Int(ctx));
case ComparisonOperator.GEQ: return ctx.MkGe(this.arithmetic_operand1.toZ3Int(ctx), this.arithmetic_operand2.toZ3Int(ctx));
case ComparisonOperator.GT: return ctx.MkGt(this.arithmetic_operand1.toZ3Int(ctx), this.arithmetic_operand2.toZ3Int(ctx));
default: throw new ArgumentOutOfRangeException();
}
}
示例8: get_implied_equalities_example
// CMW: get_implied_equalities is deprecated.
///*!
// \brief Extract implied equalities.
//*/
public void get_implied_equalities_example()
{
if (this.z3 != null)
{
this.z3.Dispose();
}
Config p = new Config();
p.SetParam("ARITH_EQ_BOUNDS","true");
this.z3 = new Context(p);
Sort int_sort = z3.MkIntSort();
Expr a = mk_int_var("a");
Expr b = mk_int_var("b");
Expr c = mk_int_var("c");
Expr d = mk_int_var("d");
FuncDecl f = z3.MkFuncDecl("f", int_sort, int_sort);
Expr fa = z3.MkApp(f,a);
Expr fb = z3.MkApp(f,b);
Expr fc = z3.MkApp(f,c);
Expr[] Exprs = new Expr[]{ a, b, c, d, fa, fb, fc };
uint[] class_ids;
solver.Assert(z3.MkEq(a, b));
solver.Assert(z3.MkEq(b, c));
solver.Assert(z3.MkLe((ArithExpr)fc, (ArithExpr)a));
solver.Assert(z3.MkLe((ArithExpr)b, (ArithExpr)fb));
int num_Exprs = Exprs.Length;
z3.GetImpliedEqualities(Exprs, out class_ids);
for (int i = 0; i < num_Exprs; ++i) {
Console.WriteLine("Class {0} |-> {1}", Exprs[i], class_ids[i]);
}
}
示例9: ToSMTConstraints
public override void ToSMTConstraints(Context z3Context, Solver z3Solver, int alphabetSize, VariableCache variableGenerator)
{
this.constraintVariable = variableGenerator.GetFreshVariableName();
ArithExpr myVariable = z3Context.MkIntConst(this.constraintVariable);
z3Solver.Assert(z3Context.MkLe(z3Context.MkInt(0), myVariable));
z3Solver.Assert(z3Context.MkLe(myVariable, z3Context.MkInt(1)));
}
示例10: LeAndEe
public static Expr LeAndEe(String left1, int left2, String right1, int right2)
{
using (Context ctx = new Context())
{
Expr a = ctx.MkConst(left1, ctx.MkIntSort());
Expr b = ctx.MkNumeral(left2, ctx.MkIntSort());
Expr c = ctx.MkConst(right1, ctx.MkIntSort());
Expr d = ctx.MkNumeral(right2, ctx.MkIntSort());
Solver s = ctx.MkSolver();
s.Assert(ctx.MkAnd(ctx.MkLe((ArithExpr)a, (ArithExpr)b), ctx.MkEq((ArithExpr)c, (ArithExpr)d)));
s.Check();
BoolExpr testing = ctx.MkAnd(ctx.MkLe((ArithExpr)a, (ArithExpr)b), ctx.MkEq((ArithExpr)c, (ArithExpr)d));
Model model = Check(ctx, testing, Status.SATISFIABLE);
Expr result2;
Model m2 = s.Model;
foreach (FuncDecl d2 in m2.Decls)
{
result2 = m2.ConstInterp(d2);
return result2;
}
}
return null;
}