本文整理匯總了C#中Microsoft.Z3.Context.MkDiv方法的典型用法代碼示例。如果您正苦於以下問題:C# Context.MkDiv方法的具體用法?C# Context.MkDiv怎麽用?C# Context.MkDiv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Microsoft.Z3.Context
的用法示例。
在下文中一共展示了Context.MkDiv方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Run
public void Run()
{
using (Context ctx = new Context())
{
BoolExpr p = ctx.MkBoolConst("p");
Console.WriteLine(ctx.MkNot(p));
Console.WriteLine(ctx.MkNot(p));
IntExpr x = ctx.MkIntConst("x");
IntExpr y = ctx.MkIntConst("y");
Console.WriteLine(ctx.MkAdd(x, ctx.MkInt(1)));
Console.WriteLine(ctx.MkAdd(ctx.MkInt(1), x));
Console.WriteLine(ctx.MkAdd(x, y));
Console.WriteLine(ctx.MkMul(ctx.MkInt(2), x));
Console.WriteLine(ctx.MkMul(x, ctx.MkInt(2)));
Console.WriteLine(ctx.MkMul(x, y));
Console.WriteLine(ctx.MkDiv(x, y));
Console.WriteLine(ctx.MkMod(x, y));
Console.WriteLine(ctx.MkEq(x, y));
Console.WriteLine(ctx.MkDistinct(x, y, x));
Console.WriteLine(ctx.MkNot(ctx.MkEq(x, y)));
Console.WriteLine(ctx.MkEq(x, y));
Console.WriteLine(ctx.MkAdd(x, ctx.MkInt(1)));
Console.WriteLine(ctx.MkAdd(x, ctx.MkInt(1)));
BoolExpr q = ctx.MkBoolConst("q");
Console.WriteLine(ctx.MkNot(p));
Console.WriteLine(ctx.MkNot(p));
Console.WriteLine(ctx.MkAnd(p, q));
Console.WriteLine(ctx.MkAnd(p, q));
Console.WriteLine(ctx.MkEq(x, y));
}
}
示例2: Run
public void Run()
{
Dictionary<string, string> cfg = new Dictionary<string, string>() {
{ "AUTO_CONFIG", "true" } };
using (Context ctx = new Context(cfg))
{
RealExpr d = ctx.MkRealConst("d");
RealExpr a = ctx.MkRealConst("a");
RealExpr t = ctx.MkRealConst("t");
RealExpr v_i = ctx.MkRealConst("v_i");
RealExpr v_f = ctx.MkRealConst("v_f");
BoolExpr[] equations = new BoolExpr[] {
ctx.MkEq(d, ctx.MkAdd(ctx.MkMul(v_i, t),
ctx.MkDiv(ctx.MkMul(a, ctx.MkPower(t, ctx.MkReal(2))),
ctx.MkReal(2)))),
ctx.MkEq(v_f, ctx.MkAdd(v_i, ctx.MkMul(a, t)))
};
Console.WriteLine("Kinematic equations: ");
foreach (BoolExpr e in equations)
Console.WriteLine(e);
BoolExpr[] problem = new BoolExpr[] {
ctx.MkEq(v_i, ctx.MkReal(0)),
ctx.MkEq(t, ctx.MkReal("4.10")),
ctx.MkEq(a, ctx.MkReal(6))
};
Console.WriteLine("Problem: ");
foreach (BoolExpr p in problem)
Console.WriteLine(p);
Solver s = ctx.MkSolver();
s.Assert(equations);
s.Assert(problem);
if (s.Check() != Status.SATISFIABLE)
throw new Exception("BUG");
Console.WriteLine("Solution: ");
Console.WriteLine(s.Model);
Console.WriteLine("Decimal Solution: ");
foreach (FuncDecl f in s.Model.ConstDecls)
Console.WriteLine(f.Name + " = " + ((RatNum)s.Model.ConstInterp(f)).ToDecimalString(10));
}
}
示例3: Run
public void Run()
{
using (Context ctx = new Context())
{
RealExpr x = ctx.MkRealConst("x");
RealExpr y = ctx.MkRealConst("y");
RealExpr z = ctx.MkRealConst("z");
IntExpr a = ctx.MkIntConst("a");
IntExpr b = ctx.MkIntConst("b");
IntExpr c = ctx.MkIntConst("c");
ctx.UpdateParamValue(":pp-flat-assoc", "false");
Console.WriteLine(ctx.MkAdd(x, y, ctx.MkInt2Real(a)));
Console.WriteLine(ctx.MkAdd(x, ctx.MkReal(1)));
Console.WriteLine(ctx.MkAdd(ctx.MkReal(2), y));
Console.WriteLine(ctx.MkMul(x, y));
Console.WriteLine(ctx.MkAdd(ctx.MkInt(2), ctx.MkInt(3)));
Console.WriteLine(ctx.MkMul(ctx.MkReal(2), x));
Console.WriteLine(ctx.MkAdd(ctx.MkInt2Real((IntExpr)ctx.MkAdd(ctx.MkInt(2), ctx.MkInt(3))), x));
Console.WriteLine(ctx.MkAdd((RealExpr)ctx.MkInt2Real((IntExpr)ctx.MkAdd(ctx.MkInt(2), ctx.MkInt(3))).Simplify(), x));
Console.WriteLine(ctx.MkAdd(a, b, ctx.MkInt(1)));
Console.WriteLine(ctx.MkDiv(x, y));
Console.WriteLine(ctx.MkDiv(x, ctx.MkReal(2)));
Console.WriteLine(ctx.MkDiv(ctx.MkReal(2), y));
Console.WriteLine(ctx.MkDiv(a, ctx.MkInt(2)));
Console.WriteLine(ctx.MkDiv(ctx.MkAdd(a, b), ctx.MkInt(2)));
Console.WriteLine(ctx.MkDiv(ctx.MkInt(3), a));
Console.WriteLine(ctx.MkMod(a, b));
Console.WriteLine(ctx.MkMod(a, ctx.MkInt(2)));
Console.WriteLine(ctx.MkMod(ctx.MkInt(3), a));
Console.WriteLine(ctx.MkSub(a, ctx.MkInt(2)));
Console.WriteLine(ctx.MkUnaryMinus(a));
Console.WriteLine(ctx.MkUnaryMinus(x));
Console.WriteLine(ctx.MkSub(a, b));
Console.WriteLine(a.IsAdd);
Console.WriteLine(ctx.MkAdd(a, b).IsAdd);
Console.WriteLine(ctx.MkSub(a, b).IsAdd);
Console.WriteLine(ctx.MkInt(10).IsAdd);
Console.WriteLine(ctx.MkMul(a, b).IsMul);
Console.WriteLine(ctx.MkMul(x, ctx.MkInt2Real(b)).IsMul);
Console.WriteLine(ctx.MkAdd(a, b).IsMul);
Console.WriteLine(ctx.MkDiv(a, ctx.MkInt(2)).IsDiv);
Console.WriteLine(ctx.MkDiv(ctx.MkReal(3), x).IsDiv);
Console.WriteLine(ctx.MkDiv(x,y).IsDiv);
Console.WriteLine(ctx.MkDiv(a, ctx.MkInt(2)).IsIDiv);
Console.WriteLine(ctx.MkAdd(ctx.MkInt(2), ctx.MkInt(3)).Simplify().IsAdd);
Console.WriteLine();
Console.WriteLine(a is ArithExpr);
Console.WriteLine(ctx.MkInt(2) is ArithExpr);
Console.WriteLine(ctx.MkAdd(a, b) is ArithExpr);
Console.WriteLine(ctx.MkBoolConst("p") is ArithExpr);
Console.WriteLine(ctx.MkInt(2) is IntNum);
Console.WriteLine(ctx.MkInt(2) is RatNum);
Console.WriteLine(ctx.MkReal(2, 3));
Console.WriteLine(ctx.MkReal(2, 3).IsReal);
Console.WriteLine(ctx.MkReal(2, 3) is ArithExpr);
Console.WriteLine(ctx.MkReal(2, 3).IsConst);
Console.WriteLine(ctx.MkReal(2, 3).Simplify() is RatNum);
Console.WriteLine(ctx.MkReal(2, 3).Simplify().IsRatNum);
Console.WriteLine(ctx.MkPower(ctx.MkReal(2), ctx.MkReal(1, 2)).Simplify().IsAlgebraicNumber);
Console.WriteLine(ctx.MkPower(ctx.MkReal(2), ctx.MkReal(1, 2)).Simplify() is AlgebraicNum);
Console.WriteLine(ctx.MkPower(ctx.MkReal(2), ctx.MkReal(1, 2)).IsAlgebraicNumber);
Console.WriteLine(ctx.MkPower(ctx.MkReal(2), ctx.MkReal(1, 2)) is AlgebraicNum);
Console.WriteLine(ctx.MkPower(ctx.MkReal(2), ctx.MkReal(1, 2)));
Console.WriteLine(ctx.MkPower(ctx.MkReal(2), ctx.MkReal(1, 3)));
}
}