當前位置: 首頁>>代碼示例>>C#>>正文


C# Bernoulli.GetProbFalse方法代碼示例

本文整理匯總了C#中Bernoulli.GetProbFalse方法的典型用法代碼示例。如果您正苦於以下問題:C# Bernoulli.GetProbFalse方法的具體用法?C# Bernoulli.GetProbFalse怎麽用?C# Bernoulli.GetProbFalse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在Bernoulli的用法示例。


在下文中一共展示了Bernoulli.GetProbFalse方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: LogAverageFactor

		/// <summary>
		/// Evidence message for EP
		/// </summary>
		/// <param name="isBetween">Incoming message from 'isBetween'.</param>
		/// <param name="X">Incoming message from 'x'.</param>
		/// <param name="lowerBound">Incoming message from 'lowerBound'.</param>
		/// <param name="upperBound">Incoming message from 'upperBound'.</param>
		/// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
		/// <remarks><para>
		/// The formula for the result is <c>log(sum_(isBetween,x,lowerBound,upperBound) p(isBetween,x,lowerBound,upperBound) factor(isBetween,x,lowerBound,upperBound))</c>.
		/// </para></remarks>
		public static double LogAverageFactor(Bernoulli isBetween, Gaussian X, Gaussian lowerBound, Gaussian upperBound)
		{
			if (isBetween.LogOdds == 0.0) return -MMath.Ln2;
			else
			{
#if true
				double logitProbBetween = MMath.LogitFromLog(LogProbBetween(X, lowerBound, upperBound));
				return Bernoulli.LogProbEqual(isBetween.LogOdds, logitProbBetween);
#else
			double d_p = isBetween.GetProbTrue() - isBetween.GetProbFalse();
			return Math.Log(d_p * Math.Exp(LogProbBetween()) + isBetween.GetProbFalse());
#endif
			}
		}
開發者ID:xornand,項目名稱:Infer.Net,代碼行數:25,代碼來源:IsBetween.cs

示例2: AverageLogFactor

		/// <summary>
		/// Evidence message for VMP.
		/// </summary>
		/// <param name="sample">Incoming message from sample</param>
		/// <param name="logOdds">Fixed value for logOdds</param>
		/// <returns><c>sum_x marginal(x)*log(factor(x))</c></returns>
		/// <remarks><para>
		/// The formula for the result is <c>int log(f(x)) q(x) dx</c>
		/// where <c>x = (sample,logOdds)</c>.
		/// </para></remarks>
		public static double AverageLogFactor(Bernoulli sample, double logOdds)
		{
			if (sample.IsPointMass) return AverageLogFactor(sample.Point, logOdds);
			// probTrue*log(sigma(logOdds)) + probFalse*log(sigma(-logOdds))
			// = -log(1+exp(-logOdds)) + probFalse*(-logOdds)
			// = probTrue*logOdds - log(1+exp(logOdds))
			if (logOdds >= 0) {
				double probFalse = sample.GetProbFalse();
				return -probFalse * logOdds - MMath.Log1PlusExp(-logOdds);
			} else {
				double probTrue = sample.GetProbTrue();
				return probTrue * logOdds - MMath.Log1PlusExp(logOdds);
			}
		}
開發者ID:xornand,項目名稱:Infer.Net,代碼行數:24,代碼來源:BernoulliFromLogOdds.cs

示例3: SampleAverageLogarithm

        /// <summary>
        /// VMP message to 'sample'.
        /// </summary>
        /// <param name="choice">Incoming message from 'choice'.</param>
        /// <param name="probTrue0">Constant value for 'probTrue0'.</param>
        /// <param name="probTrue1">Constant value for 'probTrue1'.</param>
        /// <returns>The outgoing VMP message to the 'sample' argument.</returns>
        /// <remarks><para>
        /// The outgoing message is the exponential of the integral of the log-factor times incoming messages, over all arguments except 'sample'.
        /// The formula is <c>int log(f(sample,x)) q(x) dx</c> where <c>x = (choice,probTrue0,probTrue1)</c>.
        /// </para></remarks>
        public static Bernoulli SampleAverageLogarithm(Bernoulli choice, double probTrue0, double probTrue1)
		{
            Bernoulli result = new Bernoulli();
			if(choice.IsPointMass) return SampleConditional(choice.Point,probTrue0,probTrue1);
			// log(p(X=true)/p(X=false)) = sum_k p(Y=k) log(ProbTrue[k]/(1-ProbTrue[k]))
			result.LogOdds = choice.GetProbFalse() * MMath.Logit(probTrue0) + choice.GetProbTrue() * MMath.Logit(probTrue1);
			return result;
		}
開發者ID:xornand,項目名稱:Infer.Net,代碼行數:19,代碼來源:BernoulliFromBoolean.cs

示例4: ChoiceAverageLogarithm

        /// <summary>
        /// VMP message to 'choice'.
        /// </summary>
        /// <param name="sample">Incoming message from 'sample'.</param>
        /// <param name="probTrue0">Constant value for 'probTrue0'.</param>
        /// <param name="probTrue1">Constant value for 'probTrue1'.</param>
        /// <returns>The outgoing VMP message to the 'choice' argument.</returns>
        /// <remarks><para>
        /// The outgoing message is the exponential of the integral of the log-factor times incoming messages, over all arguments except 'choice'.
        /// The formula is <c>int log(f(choice,x)) q(x) dx</c> where <c>x = (sample,probTrue0,probTrue1)</c>.
        /// </para></remarks>
		public static Bernoulli ChoiceAverageLogarithm(Bernoulli sample, double probTrue0, double probTrue1)
		{
            Bernoulli result = new Bernoulli();
			if(sample.IsPointMass) return ChoiceConditional(sample.Point,probTrue0,probTrue1);
			// p(Y=k) =propto ProbTrue[k]^p(X=true) (1-ProbTrue[k])^p(X=false)
			// log(p(Y=true)/p(Y=false)) = p(X=true)*log(ProbTrue[1]/ProbTrue[0]) + p(X=false)*log((1-ProbTrue[1])/(1-ProbTrue[0]))
			//                           = p(X=false)*(log(ProbTrue[0]/(1-ProbTrue[0]) - log(ProbTrue[1]/(1-ProbTrue[1]))) + log(ProbTrue[1]/ProbTrue[0])
			if (probTrue0 == 0 || probTrue1 == 0) throw new ArgumentException("probTrue is zero");
			result.LogOdds = sample.GetProbTrue() * Math.Log(probTrue1 / probTrue0) + sample.GetProbFalse() * Math.Log((1 - probTrue1) / (1 - probTrue0));
			return result;
		}
開發者ID:xornand,項目名稱:Infer.Net,代碼行數:22,代碼來源:BernoulliFromBoolean.cs

示例5: AAverageLogarithm

		/// <summary>
		/// VMP message to 'a'
		/// </summary>
		/// <param name="or">Incoming message from 'or'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
		/// <param name="B">Incoming message from 'b'.</param>
		/// <returns>The outgoing VMP message to the 'a' argument</returns>
		/// <remarks><para>
		/// The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except 'a'.
		/// Because the factor is deterministic, 'or' is integrated out before taking the logarithm.
		/// The formula is <c>exp(sum_(b) p(b) log(sum_or p(or) factor(or,a,b)))</c>.
		/// </para></remarks>
		/// <exception cref="ImproperMessageException"><paramref name="or"/> is not a proper distribution</exception>
		public static Bernoulli AAverageLogarithm([SkipIfUniform] Bernoulli or, Bernoulli B)
		{
			// when 'or' is marginalized, the factor is proportional to exp((A|B)*or.LogOdds)
			return Bernoulli.FromLogOdds(or.LogOdds * B.GetProbFalse());
		}
開發者ID:xornand,項目名稱:Infer.Net,代碼行數:17,代碼來源:Or.cs

示例6: SampleAverageConditional

        /// <summary>
        /// EP message to 'sample'.
        /// </summary>
        /// <param name="choice">Incoming message from 'choice'.</param>
        /// <param name="probTrue0">Constant value for 'probTrue0'.</param>
        /// <param name="probTrue1">Constant value for 'probTrue1'.</param>
        /// <returns>The outgoing EP message to the 'sample' argument.</returns>
        /// <remarks><para>
        /// The outgoing message is the integral of the factor times incoming messages, over all arguments except 'sample'.
        /// The formula is <c>int f(sample,x) q(x) dx</c> where <c>x = (choice,probTrue0,probTrue1)</c>.
        /// </para></remarks>
        public static Bernoulli SampleAverageConditional(Bernoulli choice, double probTrue0, double probTrue1)
		{
            Bernoulli result = new Bernoulli();
			if(choice.IsPointMass) return SampleConditional(choice.Point,probTrue0,probTrue1);
#if FAST
			result.SetProbTrue(choice.GetProbFalse() * probTrue0 + choice.GetProbTrue() * probTrue1);
#else
			// This method is more numerically stable but slower.
			// let oX = log(p(X)/(1-p(X))
			// let oY = log(p(Y)/(1-p(Y))
			// oX = log( (TT*sigma(oY) + TF*sigma(-oY))/(FT*sigma(oY) + FF*sigma(-oY)) )
			//    = log( (TT*exp(oY) + TF)/(FT*exp(oY) + FF) )
			//    = log( (exp(oY) + TF/TT)/(exp(oY) + FF/FT) ) + log(TT/FT)
			// ay = log(TF/TT)
			// by = log(FF/FT)
			// offset = log(TT/FT)
			if (probTrue0 == 0 || probTrue1 == 0) throw new ArgumentException("probTrue is zero");
			double ay = Math.Log(probTrue0 / probTrue1);
			double by = Math.Log((1 - probTrue0) / (1 - probTrue1));
			double offset = MMath.Logit(probTrue1);
			result.LogOdds = MMath.DiffLogSumExp(choice.LogOdds, ay, by) + offset;
#endif
			return result;
		}
開發者ID:xornand,項目名稱:Infer.Net,代碼行數:35,代碼來源:BernoulliFromBoolean.cs

示例7: ShapeParamsAverageConditional

        private static GaussianGamma ShapeParamsAverageConditional(
            double coord, double otherCoord, Bernoulli label, GaussianGamma shapeParamsDistr, GaussianGamma otherShapeParamsDistr, GaussianGamma result)
        {
            GaussianGamma shapeParamsDistrTimesFactor = DistributionTimesFactor(coord, shapeParamsDistr);
            GaussianGamma otherShapeParamsDistrTimesFactor = DistributionTimesFactor(otherCoord, otherShapeParamsDistr);
            double labelProbFalse = label.GetProbFalse();
            double weight1 = labelProbFalse;
            double weight2 = Math.Exp(
                shapeParamsDistrTimesFactor.GetLogNormalizer() - shapeParamsDistr.GetLogNormalizer() +
                otherShapeParamsDistrTimesFactor.GetLogNormalizer() - otherShapeParamsDistr.GetLogNormalizer()) *
                (1 - 2 * labelProbFalse);
            var projectionOfSum = new GaussianGamma();
            projectionOfSum.SetToSum(weight1, shapeParamsDistr, weight2, shapeParamsDistrTimesFactor);
            result.SetToRatio(projectionOfSum, shapeParamsDistr);

            return result;
        }
開發者ID:hr0nix,項目名稱:BayesianShapePrior,代碼行數:17,代碼來源:ShapeFactors.cs

示例8: LogAverageFactor

 public static double LogAverageFactor(Bernoulli label, Vector point, GaussianGamma shapeParamsX, GaussianGamma shapeParamsY)
 {
     GaussianGamma shapeParamsXDistrTimesFactor = DistributionTimesFactor(point[0], shapeParamsX);
     GaussianGamma shapeParamsYDistrTimesFactor = DistributionTimesFactor(point[1], shapeParamsY);
     double labelProbFalse = label.GetProbFalse();
     double normalizerProduct = Math.Exp(
         shapeParamsXDistrTimesFactor.GetLogNormalizer() - shapeParamsX.GetLogNormalizer() +
         shapeParamsYDistrTimesFactor.GetLogNormalizer() - shapeParamsY.GetLogNormalizer());
     double averageFactor = labelProbFalse + (1 - 2 * labelProbFalse) * normalizerProduct;
     Debug.Assert(averageFactor > 0);
     return Math.Log(averageFactor);
 }
開發者ID:hr0nix,項目名稱:BayesianShapePrior,代碼行數:12,代碼來源:ShapeFactors.cs

示例9: ShapeAverageConditional

        private static Gaussian ShapeAverageConditional(
            Vector point, Bernoulli label, Gaussian shapeX, Gaussian shapeY, PositiveDefiniteMatrix shapeOrientation, bool resultForXCoord)
        {
            if (shapeX.IsPointMass && shapeY.IsPointMass)
            {
                double labelProbTrue = label.GetProbTrue();
                double labelProbFalse = 1.0 - labelProbTrue;
                double probDiff = labelProbTrue - labelProbFalse;

                Vector shapeLocation = Vector.FromArray(shapeX.Point, shapeY.Point);
                Vector diff = point - shapeLocation;
                Vector orientationTimesDiff = shapeOrientation * diff;
                Matrix orientationTimesDiffOuter = orientationTimesDiff.Outer(orientationTimesDiff);

                double factorValue = Math.Exp(-0.5 * shapeOrientation.QuadraticForm(diff));
                double funcValue = factorValue * probDiff + labelProbFalse;

                Vector dFunc = probDiff * factorValue * orientationTimesDiff;
                Vector dLogFunc = 1.0 / funcValue * dFunc;
                Matrix ddLogFunc =
                    ((orientationTimesDiffOuter + shapeOrientation) * factorValue * funcValue - orientationTimesDiffOuter * probDiff * factorValue * factorValue)
                    * (probDiff / (funcValue * funcValue));

                double x = resultForXCoord ? shapeX.Point : shapeY.Point;
                double d = resultForXCoord ? dLogFunc[0] : dLogFunc[1];
                double dd = resultForXCoord ? ddLogFunc[0, 0] : ddLogFunc[1, 1];
                return Gaussian.FromDerivatives(x, d, dd, forceProper: true);
            }
            else if (!shapeX.IsPointMass && !shapeY.IsPointMass)
            {
                VectorGaussian shapeLocationTimesFactor = ShapeLocationTimesFactor(point, shapeX, shapeY, shapeOrientation);
                double labelProbFalse = label.GetProbFalse();
                double shapeLocationWeight = labelProbFalse;
                double shapeLocationTimesFactorWeight =
                    Math.Exp(shapeLocationTimesFactor.GetLogNormalizer() - shapeX.GetLogNormalizer() - shapeY.GetLogNormalizer() - 0.5 * shapeOrientation.QuadraticForm(point)) *
                    (1 - 2 * labelProbFalse);

                var projectionOfSum = new Gaussian();
                projectionOfSum.SetToSum(
                    shapeLocationWeight,
                    resultForXCoord ? shapeX : shapeY,
                    shapeLocationTimesFactorWeight,
                    shapeLocationTimesFactor.GetMarginal(resultForXCoord ? 0 : 1));
                Gaussian result = new Gaussian();
                result.SetToRatio(projectionOfSum, resultForXCoord ? shapeX : shapeY);

                return result;
            }
            else
            {
                throw new NotSupportedException();
            }
        }
開發者ID:hr0nix,項目名稱:BayesianShapePrior,代碼行數:53,代碼來源:ShapeFactors.cs


注:本文中的Bernoulli.GetProbFalse方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。