本文整理匯總了C#中Bernoulli類的典型用法代碼示例。如果您正苦於以下問題:C# Bernoulli類的具體用法?C# Bernoulli怎麽用?C# Bernoulli使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
Bernoulli類屬於命名空間,在下文中一共展示了Bernoulli類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: AAverageConditional
public static Bernoulli AAverageConditional(Bernoulli b, double penalty)
{
double penaltyFactor = Math.Exp(-penalty);
double bProbTrue = b.GetProbTrue();
double probTrue = (penaltyFactor * (1 - bProbTrue) + bProbTrue) / (penaltyFactor + 1);
return new Bernoulli(probTrue);
}
示例2: Reset
/// <summary>
/// Configures constant values that will not change during the lifetime of the class.
/// </summary>
/// <remarks>
/// This method should be called once only after the class is instantiated. In future, it will likely become
/// the class constructor.
/// </remarks>
public void Reset()
{
// Create array for 'firstCoin_uses' backwards messages.
this.firstCoin_uses_B = new Bernoulli[0];
this.vBernoulli0 = new Bernoulli(0.5);
this.firstCoin_F = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli0);
// Message to 'firstCoin' from Random factor
this.firstCoin_F = UnaryOp<bool>.RandomAverageConditional<Bernoulli>(this.vBernoulli0);
}
示例3: AverageLogFactor
/// <summary>
/// Evidence message for VMP.
/// </summary>
/// <param name="sample">Incoming message from sample</param>
/// <param name="logOdds">Incoming message from logOdds</param>
/// <returns><c>sum_x marginal(x)*log(factor(x))</c></returns>
/// <remarks><para>
/// The formula for the result is <c>int log(f(x)) q(x) dx</c>
/// where <c>x = (sample,logOdds)</c>.
/// </para></remarks>
public static double AverageLogFactor(Bernoulli sample, [Proper, SkipIfUniform] Gaussian logOdds)
{
if (logOdds.IsUniform()) return 0.0;
double m, v;
logOdds.GetMeanAndVariance(out m, out v);
double t = Math.Sqrt(m * m + v);
double s = 2 * sample.GetProbTrue() - 1; // probTrue - probFalse
return MMath.LogisticLn(t) + (s * m - t) / 2;
}
示例4: Reset
/// <summary>
/// Configures constant values that will not change during the lifetime of the class.
/// </summary>
/// <remarks>
/// This method should be called once only after the class is instantiated. In future, it will likely become
/// the class constructor.
/// </remarks>
public void Reset()
{
// Create array for 'vbool319_uses' backwards messages.
this.vbool319_uses_B = new Bernoulli[0];
this.vBernoulli157 = new Bernoulli(0.166666666666667);
this.vbool319_F = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli157);
// Message to 'vbool319' from Random factor
this.vbool319_F = UnaryOp<bool>.RandomAverageConditional<Bernoulli>(this.vBernoulli157);
}
示例5: Infer
public void Infer(bool[] treated, bool[] placebo)
{
// Set the observed values
numberPlacebo.ObservedValue = placebo.Length;
numberTreated.ObservedValue = treated.Length;
placeboGroupOutcomes.ObservedValue = placebo;
treatedGroupOutcomes.ObservedValue = treated;
// Infer the hidden values
posteriorTreatmentIsEffective = engine.Infer<Bernoulli>(isEffective);
posteriorProbIfPlacebo = engine.Infer<Beta>(probIfPlacebo);
posteriorProbIfTreated = engine.Infer<Beta>(probIfTreated);
}
示例6: ChoiceConditional
/// <summary>
/// Gibbs message to 'choice'.
/// </summary>
/// <param name="sample">Constant value for 'sample'.</param>
/// <param name="probTrue0">Constant value for 'probTrue0'.</param>
/// <param name="probTrue1">Constant value for 'probTrue1'.</param>
/// <returns>The outgoing Gibbs message to the 'choice' argument.</returns>
/// <remarks><para>
/// The outgoing message is the factor viewed as a function of 'choice' conditioned on the given values.
/// </para></remarks>
public static Bernoulli ChoiceConditional(bool sample, double probTrue0, double probTrue1)
{
Bernoulli result = new Bernoulli();
if (probTrue0 == 0 || probTrue1 == 0) throw new ArgumentException("probTrue is zero");
if (sample) {
double sum = probTrue0 + probTrue1;
if(sum == 0.0) throw new AllZeroException();
else result.SetProbTrue(probTrue1 / sum);
} else {
double sum = 2 - probTrue1 - probTrue0;
if(sum == 0.0) throw new AllZeroException();
else result.SetProbTrue((1 - probTrue1) / sum);
}
return result;
}
示例7: LogAverageFactor
/// <summary>
/// Evidence message for EP
/// </summary>
/// <param name="isPositive">Incoming message from 'isPositive'.</param>
/// <param name="x">Incoming message from 'x'.</param>
/// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
/// <remarks><para>
/// The formula for the result is <c>log(sum_(isPositive,x) p(isPositive,x) factor(isPositive,x))</c>.
/// </para></remarks>
public static double LogAverageFactor(Bernoulli isPositive, Gaussian x)
{
if (isPositive.IsPointMass && x.Precision == 0) {
double tau = x.MeanTimesPrecision;
if (isPositive.Point && tau < 0) {
// int I(x>0) exp(tau*x) dx = -1/tau
return -Math.Log(-tau);
}
if (!isPositive.Point && tau > 0) {
// int I(x<0) exp(tau*x) dx = 1/tau
return -Math.Log(tau);
}
}
Bernoulli to_isPositive = IsPositiveAverageConditional(x);
return isPositive.GetLogAverageOf(to_isPositive);
}
示例8: GenerateData
/// <summary>
/// Generates a data set from a particular true model.
/// </summary>
public Vector[] GenerateData(int nData)
{
Vector trueM1 = Vector.FromArray(2.0, 3.0);
Vector trueM2 = Vector.FromArray(7.0, 5.0);
PositiveDefiniteMatrix trueP1 = new PositiveDefiniteMatrix(
new double[,] { { 3.0, 0.2 }, { 0.2, 2.0 } });
PositiveDefiniteMatrix trueP2 = new PositiveDefiniteMatrix(
new double[,] { { 2.0, 0.4 }, { 0.4, 4.0 } });
VectorGaussian trueVG1 = VectorGaussian.FromMeanAndPrecision(trueM1, trueP1);
VectorGaussian trueVG2 = VectorGaussian.FromMeanAndPrecision(trueM2, trueP2);
double truePi = 0.6;
Bernoulli trueB = new Bernoulli(truePi);
// Restart the infer.NET random number generator
Rand.Restart(12347);
Vector[] data = new Vector[nData];
for (int j = 0; j < nData; j++) {
bool bSamp = trueB.Sample();
data[j] = bSamp ? trueVG1.Sample() : trueVG2.Sample();
}
return data;
}
示例9: LogAverageFactor
/// <summary>
/// Evidence message for EP
/// </summary>
/// <param name="isPositive">Incoming message from 'isPositive'.</param>
/// <param name="x">Incoming message from 'x'.</param>
/// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
/// <remarks><para>
/// The formula for the result is <c>log(sum_(isPositive,x) p(isPositive,x) factor(isPositive,x))</c>.
/// </para></remarks>
public static double LogAverageFactor(Bernoulli isPositive, Gaussian x)
{
Bernoulli to_isPositive = IsPositiveAverageConditional(x);
return isPositive.GetLogAverageOf(to_isPositive);
#if false
// Z = p(b=T) p(x > 0) + p(b=F) p(x <= 0)
// = p(b=F) + (p(b=T) - p(b=F)) p(x > 0)
if (x.IsPointMass) {
return Factor.IsPositive(x.Point) ? isPositive.GetLogProbTrue() : isPositive.GetLogProbFalse();
} else if(x.IsUniform()) {
return Bernoulli.LogProbEqual(isPositive.LogOdds,0.0);
} else {
// m/sqrt(v) = (m/v)/sqrt(1/v)
double z = x.MeanTimesPrecision / Math.Sqrt(x.Precision);
if (isPositive.IsPointMass) {
return isPositive.Point ? MMath.NormalCdfLn(z) : MMath.NormalCdfLn(-z);
} else {
return MMath.LogSumExp(isPositive.GetLogProbTrue() + MMath.NormalCdfLn(z), isPositive.GetLogProbFalse() + MMath.NormalCdfLn(-z));
}
}
#endif
}
示例10: Initialise
/// <summary>
/// Creates message arrays and initialises their values ready for inference to be performed.
/// </summary>
/// <remarks>
/// This method should be called once each time inference is performed. Since the initialisation
/// procedure normally dependson external values such as priors and array sizes, all external
/// values must be set before calling this method.
///
/// As well as initialising message arrays, this method also performs any message passing that
/// the scheduler determines need only be carried out once.
/// </remarks>
public void Initialise()
{
this.vbool440_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool471_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool432_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool343_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool472_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool351_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool335_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool359_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool367_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool319_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool327_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool303_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool311_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool295_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
this.vbool179_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli187);
this.vbool171_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli179);
this.vbool101_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli109);
this.vbool153_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli161);
this.vbool124_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli132);
this.vbool88_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli96);
this.vbool140_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli148);
this.vbool80_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli88);
this.vbool132_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli140);
this.vbool28_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli36);
this.vbool62_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli70);
this.vbool36_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli44);
this.vbool54_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli62);
this.vbool10_marginal_B = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli18);
}
示例11: Reset
/// <summary>
/// Configures constant values that will not change during the lifetime of the class.
/// </summary>
/// <remarks>
/// This method should be called once only after the class is instantiated. In future, it will likely become
/// the class constructor.
/// </remarks>
public void Reset()
{
// Create array for 'vbool179_uses' backwards messages.
this.vbool179_uses_B = new Bernoulli[2];
this.vBernoulli187 = new Bernoulli(0.01);
for(int _ind0 = 0; _ind0<2; _ind0++)
{
this.vbool179_uses_B[_ind0] = ArrayHelper.MakeUniform<Bernoulli>(this.vBernoulli187);
}
this.vbool179_F = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli187);
// Message to 'vbool179' from Random factor
this.vbool179_F = UnaryOp<bool>.RandomAverageConditional<Bernoulli>(this.vBernoulli187);
// Create array for 'vbool171_uses' backwards messages.
this.vbool171_uses_B = new Bernoulli[2];
this.vBernoulli179 = new Bernoulli(0.5);
for(int _ind0 = 0; _ind0<2; _ind0++)
{
this.vbool171_uses_B[_ind0] = ArrayHelper.MakeUniform<Bernoulli>(this.vBernoulli179);
}
this.vbool171_F = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli179);
// Message to 'vbool171' from Random factor
this.vbool171_F = UnaryOp<bool>.RandomAverageConditional<Bernoulli>(this.vBernoulli179);
// Create array for 'vbool440_uses' backwards messages.
this.vbool440_uses_B = new Bernoulli[1];
for(int _ind0 = 0; _ind0<1; _ind0++)
{
this.vbool440_uses_B[_ind0] = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
}
this.vbool440_F = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
// Create array for 'vbool101_uses' backwards messages.
this.vbool101_uses_B = new Bernoulli[2];
this.vBernoulli109 = new Bernoulli(0.01);
for(int _ind0 = 0; _ind0<2; _ind0++)
{
this.vbool101_uses_B[_ind0] = ArrayHelper.MakeUniform<Bernoulli>(this.vBernoulli109);
}
this.vbool101_F = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli109);
// Message to 'vbool101' from Random factor
this.vbool101_F = UnaryOp<bool>.RandomAverageConditional<Bernoulli>(this.vBernoulli109);
// Create array for 'vbool471_uses' backwards messages.
this.vbool471_uses_B = new Bernoulli[1];
for(int _ind0 = 0; _ind0<1; _ind0++)
{
this.vbool471_uses_B[_ind0] = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
}
this.vbool471_F = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
// Create array for 'vbool153_uses' backwards messages.
this.vbool153_uses_B = new Bernoulli[2];
this.vBernoulli161 = new Bernoulli(0.01);
for(int _ind0 = 0; _ind0<2; _ind0++)
{
this.vbool153_uses_B[_ind0] = ArrayHelper.MakeUniform<Bernoulli>(this.vBernoulli161);
}
this.vbool153_F = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli161);
// Message to 'vbool153' from Random factor
this.vbool153_F = UnaryOp<bool>.RandomAverageConditional<Bernoulli>(this.vBernoulli161);
// Create array for 'vbool432_uses' backwards messages.
this.vbool432_uses_B = new Bernoulli[1];
for(int _ind0 = 0; _ind0<1; _ind0++)
{
this.vbool432_uses_B[_ind0] = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
}
this.vbool432_F = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
// Create array for 'vbool124_uses' backwards messages.
this.vbool124_uses_B = new Bernoulli[2];
this.vBernoulli132 = new Bernoulli(0.5);
for(int _ind0 = 0; _ind0<2; _ind0++)
{
this.vbool124_uses_B[_ind0] = ArrayHelper.MakeUniform<Bernoulli>(this.vBernoulli132);
}
this.vbool124_F = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli132);
// Message to 'vbool124' from Random factor
this.vbool124_F = UnaryOp<bool>.RandomAverageConditional<Bernoulli>(this.vBernoulli132);
// Create array for 'vbool343_uses' backwards messages.
this.vbool343_uses_B = new Bernoulli[1];
for(int _ind0 = 0; _ind0<1; _ind0++)
{
this.vbool343_uses_B[_ind0] = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
}
this.vbool343_F = ArrayHelper.MakeUniform<Bernoulli>(new Bernoulli());
// Create array for 'vbool88_uses' backwards messages.
this.vbool88_uses_B = new Bernoulli[2];
this.vBernoulli96 = new Bernoulli(0.01);
for(int _ind0 = 0; _ind0<2; _ind0++)
{
this.vbool88_uses_B[_ind0] = ArrayHelper.MakeUniform<Bernoulli>(this.vBernoulli96);
}
this.vbool88_F = ArrayHelper.MakeUniform<Bernoulli>(vBernoulli96);
// Message to 'vbool88' from Random factor
this.vbool88_F = UnaryOp<bool>.RandomAverageConditional<Bernoulli>(this.vBernoulli96);
// Create array for 'vbool472_uses' backwards messages.
this.vbool472_uses_B = new Bernoulli[1];
for(int _ind0 = 0; _ind0<1; _ind0++)
//.........這裏部分代碼省略.........
示例12: LogAverageFactor
/// <summary>
/// Evidence message for EP
/// </summary>
/// <param name="sample">Incoming message from 'sample'.</param>
/// <param name="to_sample">Outgoing message to 'sample'.</param>
/// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
/// <remarks><para>
/// The formula for the result is <c>log(sum_(sample) p(sample) factor(sample,probTrue))</c>.
/// </para></remarks>
public static double LogAverageFactor(Bernoulli sample, [Fresh] Bernoulli to_sample)
{
return sample.GetLogAverageOf(to_sample);
}
示例13: LogEvidenceRatio
public static double LogEvidenceRatio(Bernoulli sample, double probTrue)
{
return 0.0;
}
示例14: Update
/// <summary>
/// Performs one iteration of inference.
/// </summary>
/// <remarks>
/// This method should be called multiple times, after calling Initialise(), in order to perform
/// multiple iterations of message passing. You can call methods to retrieve posterior marginals
/// at any time - the returned marginal will be the estimated marginal given the current state of
/// the message passing algorithm. This can be useful for monitoring convergence of the algorithm.
///
/// Where the scheduler has determined inference can be performed without iteration, this method
/// does nothing.
/// </remarks>
public void Update()
{
// Message to 'vbool111_uses' from And factor
this.vbool111_uses_B[2] = BooleanAndOp.AAverageConditional(this.vbool287_B, this.vbool116_uses_F[0]);
// Message to 'vbool111_uses' from UsesEqualDef factor
this.vbool111_uses_F[0] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool111_uses_B, this.vbool111_F, 0, this.vbool111_uses_F[0]);
// Message to 'vbool103_uses' from AreEqual factor
this.vbool103_uses_B[1] = BooleanAreEqualOp.BAverageConditional(this.vbool194_B, this.vbool111_uses_F[0]);
// Message to 'vbool103_uses' from UsesEqualDef factor
this.vbool103_uses_F[0] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool103_uses_B, this.vbool103_F, 0, this.vbool103_uses_F[0]);
// Message to 'vbool181_uses' from AreEqual factor
this.vbool181_uses_B[2] = BooleanAreEqualOp.BAverageConditional(this.vbool446_B, this.vbool103_uses_F[0]);
// Message to 'vbool181_uses' from UsesEqualDef factor
this.vbool181_uses_F[0] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool181_uses_B, this.vbool181_F, 0, this.vbool181_uses_F[0]);
// Message to 'vbool163_uses' from AreEqual factor
this.vbool163_uses_B[0] = BooleanAreEqualOp.BAverageConditional(this.vbool420_B, this.vbool181_uses_F[0]);
// Message to 'vbool163_uses' from UsesEqualDef factor
this.vbool163_uses_F[1] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool163_uses_B, this.vbool163_F, 1, this.vbool163_uses_F[1]);
// Message to 'vbool155_uses' from AreEqual factor
this.vbool155_uses_B[1] = BooleanAreEqualOp.BAverageConditional(this.vbool419_B, this.vbool163_uses_F[1]);
// Message to 'vbool155_uses' from UsesEqualDef factor
this.vbool155_uses_F[0] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool155_uses_B, this.vbool155_F, 0, this.vbool155_uses_F[0]);
// Message to 'vbool181_uses' from AreEqual factor
this.vbool181_uses_B[1] = BooleanAreEqualOp.AAverageConditional(this.vbool441_B, this.vbool155_uses_F[0]);
// Message to 'vbool181_uses' from UsesEqualDef factor
this.vbool181_uses_F[1] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool181_uses_B, this.vbool181_F, 1, this.vbool181_uses_F[1]);
// Message to 'vbool155_uses' from AreEqual factor
this.vbool155_uses_B[0] = BooleanAreEqualOp.BAverageConditional(this.vbool441_B, this.vbool181_uses_F[1]);
// Message to 'vbool441' from AreEqual factor
this.vbool441_F = BooleanAreEqualOp.AreEqualAverageConditional(this.vbool181_uses_F[1], this.vbool155_uses_F[0]);
// Message to 'vbool441_marginal' from ReplicateWithMarginal factor
this.vbool441_marginal_B = ReplicateOp.MarginalAverageConditional<Bernoulli>(this.vbool441_uses_B, this.vbool441_F, this.vbool441_marginal_B);
// Message to 'vbool155_uses' from UsesEqualDef factor
this.vbool155_uses_F[2] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool155_uses_B, this.vbool155_F, 2, this.vbool155_uses_F[2]);
// Message to 'vbool90_uses' from AreEqual factor
this.vbool90_uses_B[0] = BooleanAreEqualOp.AAverageConditional(this.vbool451_B, this.vbool155_uses_F[2]);
// Message to 'vbool90_uses' from UsesEqualDef factor
this.vbool90_uses_F[1] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool90_uses_B, this.vbool90_F, 1, this.vbool90_uses_F[1]);
// Message to 'vbool72_uses' from AreEqual factor
this.vbool72_uses_B[0] = BooleanAreEqualOp.BAverageConditional(this.vbool210_B, this.vbool90_uses_F[1]);
// Message to 'vbool72_uses' from UsesEqualDef factor
this.vbool72_uses_F[1] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool72_uses_B, this.vbool72_F, 1, this.vbool72_uses_F[1]);
// Message to 'vbool155_uses' from UsesEqualDef factor
this.vbool155_uses_F[1] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool155_uses_B, this.vbool155_F, 1, this.vbool155_uses_F[1]);
// Message to 'vbool163_uses' from AreEqual factor
this.vbool163_uses_B[1] = BooleanAreEqualOp.AAverageConditional(this.vbool419_B, this.vbool155_uses_F[1]);
// Message to 'vbool163_marginal' from UsesEqualDef factor
this.vbool163_marginal_B = UsesEqualDefOp.MarginalAverageConditional<Bernoulli>(this.vbool163_uses_B, this.vbool163_F, this.vbool163_marginal_B);
// Message to 'vbool419' from AreEqual factor
this.vbool419_F = BooleanAreEqualOp.AreEqualAverageConditional(this.vbool163_uses_F[1], this.vbool155_uses_F[1]);
// Message to 'vbool419_marginal' from ReplicateWithMarginal factor
this.vbool419_marginal_B = ReplicateOp.MarginalAverageConditional<Bernoulli>(this.vbool419_uses_B, this.vbool419_F, this.vbool419_marginal_B);
// Message to 'vbool163_uses' from UsesEqualDef factor
this.vbool163_uses_F[0] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool163_uses_B, this.vbool163_F, 0, this.vbool163_uses_F[0]);
// Message to 'vbool181_uses' from AreEqual factor
this.vbool181_uses_B[0] = BooleanAreEqualOp.AAverageConditional(this.vbool420_B, this.vbool163_uses_F[0]);
// Message to 'vbool181_marginal' from UsesEqualDef factor
this.vbool181_marginal_B = UsesEqualDefOp.MarginalAverageConditional<Bernoulli>(this.vbool181_uses_B, this.vbool181_F, this.vbool181_marginal_B);
// Message to 'vbool420' from AreEqual factor
this.vbool420_F = BooleanAreEqualOp.AreEqualAverageConditional(this.vbool181_uses_F[0], this.vbool163_uses_F[0]);
// Message to 'vbool420_marginal' from ReplicateWithMarginal factor
this.vbool420_marginal_B = ReplicateOp.MarginalAverageConditional<Bernoulli>(this.vbool420_uses_B, this.vbool420_F, this.vbool420_marginal_B);
// Message to 'vbool181_uses' from UsesEqualDef factor
this.vbool181_uses_F[2] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool181_uses_B, this.vbool181_F, 2, this.vbool181_uses_F[2]);
// Message to 'vbool103_uses' from AreEqual factor
this.vbool103_uses_B[0] = BooleanAreEqualOp.AAverageConditional(this.vbool446_B, this.vbool181_uses_F[2]);
// Message to 'vbool103_marginal' from UsesEqualDef factor
this.vbool103_marginal_B = UsesEqualDefOp.MarginalAverageConditional<Bernoulli>(this.vbool103_uses_B, this.vbool103_F, this.vbool103_marginal_B);
// Message to 'vbool446' from AreEqual factor
this.vbool446_F = BooleanAreEqualOp.AreEqualAverageConditional(this.vbool103_uses_F[0], this.vbool181_uses_F[2]);
// Message to 'vbool446_marginal' from ReplicateWithMarginal factor
this.vbool446_marginal_B = ReplicateOp.MarginalAverageConditional<Bernoulli>(this.vbool446_uses_B, this.vbool446_F, this.vbool446_marginal_B);
// Message to 'vbool103_uses' from UsesEqualDef factor
this.vbool103_uses_F[1] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool103_uses_B, this.vbool103_F, 1, this.vbool103_uses_F[1]);
// Message to 'vbool111_uses' from AreEqual factor
this.vbool111_uses_B[0] = BooleanAreEqualOp.AAverageConditional(this.vbool194_B, this.vbool103_uses_F[1]);
// Message to 'vbool194' from AreEqual factor
this.vbool194_F = BooleanAreEqualOp.AreEqualAverageConditional(this.vbool111_uses_F[0], this.vbool103_uses_F[1]);
// Message to 'vbool194_marginal' from ReplicateWithMarginal factor
this.vbool194_marginal_B = ReplicateOp.MarginalAverageConditional<Bernoulli>(this.vbool194_uses_B, this.vbool194_F, this.vbool194_marginal_B);
// Message to 'vbool111_uses' from UsesEqualDef factor
this.vbool111_uses_F[1] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool111_uses_B, this.vbool111_F, 1, this.vbool111_uses_F[1]);
// Message to 'vbool111_uses' from UsesEqualDef factor
this.vbool111_uses_F[2] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool111_uses_B, this.vbool111_F, 2, this.vbool111_uses_F[2]);
// Message to 'vbool116_uses' from And factor
this.vbool116_uses_B[0] = BooleanAndOp.BAverageConditional(this.vbool287_B, this.vbool111_uses_F[2]);
// Message to 'vbool116_uses' from UsesEqualDef factor
this.vbool116_uses_F[1] = UsesEqualDefOp.UsesAverageConditional<Bernoulli>(this.vbool116_uses_B, this.vbool116_F, 1, this.vbool116_uses_F[1]);
//.........這裏部分代碼省略.........
示例15: ProbTrueAverageLogarithm
/// <summary>
/// VMP message to 'probTrue'
/// </summary>
/// <param name="sample">Incoming message from 'sample'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <returns>The outgoing VMP message to the 'probTrue' argument</returns>
/// <remarks><para>
/// The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except 'probTrue'.
/// The formula is <c>exp(sum_(sample) p(sample) log(factor(sample,probTrue)))</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="sample"/> is not a proper distribution</exception>
public static Beta ProbTrueAverageLogarithm(Bernoulli sample)
{
// E[x*log(p) + (1-x)*log(1-p)] = E[x]*log(p) + (1-E[x])*log(1-p)
double ex = sample.GetProbTrue();
return new Beta(1 + ex, 2 - ex);
}