當前位置: 首頁>>代碼示例>>C#>>正文


C# ActivationNetwork.Compute方法代碼示例

本文整理匯總了C#中ActivationNetwork.Compute方法的典型用法代碼示例。如果您正苦於以下問題:C# ActivationNetwork.Compute方法的具體用法?C# ActivationNetwork.Compute怎麽用?C# ActivationNetwork.Compute使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ActivationNetwork的用法示例。


在下文中一共展示了ActivationNetwork.Compute方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: RunEpochTest1

        public void RunEpochTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            double[][] input = 
            {
                new double[] { -1, -1 },
                new double[] { -1,  1 },
                new double[] {  1, -1 },
                new double[] {  1,  1 }
            };

            double[][] output =
            {
                new double[] { -1 },
                new double[] {  1 },
                new double[] {  1 },
                new double[] { -1 }
            };

            Neuron.RandGenerator = new ThreadSafeRandom(0);
            ActivationNetwork network = new ActivationNetwork(
                   new BipolarSigmoidFunction(2), 2, 2, 1);

            var teacher = new ParallelResilientBackpropagationLearning(network);

            double error = 1.0;
            while (error > 1e-5)
                error = teacher.RunEpoch(input, output);

            for (int i = 0; i < input.Length; i++)
            {
                double actual = network.Compute(input[i])[0];
                double expected = output[i][0];

                Assert.AreEqual(expected, actual, 0.01);
                Assert.IsFalse(Double.IsNaN(actual));
            }
        }
開發者ID:CanerPatir,項目名稱:framework,代碼行數:39,代碼來源:ResilientPropagationLearningTest.cs

示例2: ZeroLambdaTest

        public void ZeroLambdaTest()
        {
            double[,] data = null;

            // open selected file
            using (TextReader stream = new StringReader(Properties.Resources.ZeroLambda))
            using (CsvReader reader = new CsvReader(stream, false))
            {
                data = reader.ToTable().ToMatrix();
            }

            // number of learning samples
            int samples = data.GetLength(0);

            var ranges = data.Range(dimension: 0);

            Assert.AreEqual(2, ranges.Length);

            var rangeX = ranges[0];
            var rangeY = ranges[1];

            // data transformation factor
            double yFactor = 1.7 / rangeY.Length;
            double yMin = rangeY.Min;
            double xFactor = 2.0 / rangeX.Length;
            double xMin = rangeX.Min;

            // prepare learning data
            double[][] input = new double[samples][];
            double[][] output = new double[samples][];

            for (int i = 0; i < samples; i++)
            {
                input[i] = new double[1];
                output[i] = new double[1];

                input[i][0] = (data[i, 0] - xMin) * xFactor - 1.0; // set input
                output[i][0] = (data[i, 1] - yMin) * yFactor - 0.85; // set output
            }

            // create multi-layer neural network
            ActivationNetwork network = new ActivationNetwork(
                new BipolarSigmoidFunction(5),
                1, 12, 1);

            // create teacher
            LevenbergMarquardtLearning teacher = new LevenbergMarquardtLearning(network, true);

            teacher.LearningRate = 1;

            // iterations
            int iteration = 1;
            int iterations = 2000;

            // solution array
            double[,] solution = new double[samples, 2];
            double[] networkInput = new double[1];

            bool needToStop = false;

            double learningError = 0;

            // loop
            while (!needToStop)
            {
                Assert.AreNotEqual(0, teacher.LearningRate);

                // run epoch of learning procedure
                double error = teacher.RunEpoch(input, output) / samples;

                // calculate solution
                for (int j = 0; j < samples; j++)
                {
                    networkInput[0] = (solution[j, 0] - xMin) * xFactor - 1.0;
                    solution[j, 1] = (network.Compute(networkInput)[0] + 0.85) / yFactor + yMin;
                }


                // calculate error
                learningError = 0.0;
                for (int j = 0; j < samples; j++)
                {
                    networkInput[0] = input[j][0];
                    learningError += Math.Abs(data[j, 1] - ((network.Compute(networkInput)[0] + 0.85) / yFactor + yMin));
                }

                // increase current iteration
                iteration++;

                // check if we need to stop
                if ((iterations != 0) && (iteration > iterations))
                    break;
            }

            Assert.IsTrue(learningError < 0.13);
        }
開發者ID:RLaumeyer,項目名稱:framework,代碼行數:96,代碼來源:LevenbergMarquardtLearningTest.cs

示例3: MulticlassTest1

        public void MulticlassTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);
            Neuron.RandGenerator = new ThreadSafeRandom(0);


            int numberOfInputs = 3;
            int numberOfClasses = 4;
            int hiddenNeurons = 5;

            double[][] input = 
            {
                new double[] { -1, -1, -1 }, // 0
                new double[] { -1,  1, -1 }, // 1
                new double[] {  1, -1, -1 }, // 1
                new double[] {  1,  1, -1 }, // 0
                new double[] { -1, -1,  1 }, // 2
                new double[] { -1,  1,  1 }, // 3
                new double[] {  1, -1,  1 }, // 3
                new double[] {  1,  1,  1 }  // 2
            };

            int[] labels =
            {
                0,
                1,
                1,
                0,
                2,
                3,
                3,
                2,
            };

            double[][] outputs = Accord.Statistics.Tools
                .Expand(labels, numberOfClasses, -1, 1);

            var function = new BipolarSigmoidFunction(2);
            var network = new ActivationNetwork(function,
                numberOfInputs, hiddenNeurons, numberOfClasses);

            new NguyenWidrow(network).Randomize();

            var teacher = new LevenbergMarquardtLearning(network);

            double error = Double.PositiveInfinity;
            for (int i = 0; i < 10; i++)
                error = teacher.RunEpoch(input, outputs);

            for (int i = 0; i < input.Length; i++)
            {
                int answer;
                double[] output = network.Compute(input[i]);
                double response = output.Max(out answer);

                int expected = labels[i];
                Assert.AreEqual(expected, answer);
            }
        }
開發者ID:RLaumeyer,項目名稱:framework,代碼行數:59,代碼來源:LevenbergMarquardtLearningTest.cs

示例4: RunEpochTest4

        public void RunEpochTest4()
        {
            Accord.Math.Tools.SetupGenerator(0);

            double[][] input = 
            {
                new double[] { 0, 0 },
            };

            double[][] output =
            {
                new double[] { 0 },
            };

            Neuron.RandGenerator = new ThreadSafeRandom(0);
            ActivationNetwork network = new ActivationNetwork(
                   new BipolarSigmoidFunction(2), 2, 1);

            var teacher = new LevenbergMarquardtLearning(network,
                true, JacobianMethod.ByBackpropagation);

            double error = 1.0;
            for (int i = 0; i < 1000; i++)
                error = teacher.RunEpoch(input, output);

            for (int i = 0; i < input.Length; i++)
                Assert.AreEqual(network.Compute(input[i])[0], output[i][0], 0.1);
        }
開發者ID:RLaumeyer,項目名稱:framework,代碼行數:28,代碼來源:LevenbergMarquardtLearningTest.cs

示例5: RunEpochTest3

        public void RunEpochTest3()
        {
            double[,] dataset = yinyang;

            double[][] input = dataset.GetColumns(0, 1).ToArray();
            double[][] output = dataset.GetColumn(2).ToArray();

            Neuron.RandGenerator = new ThreadSafeRandom(0);

            ActivationNetwork network = new ActivationNetwork(
                   new BipolarSigmoidFunction(2), 2, 5, 1);

            var teacher = new LevenbergMarquardtLearning(network,
                true, JacobianMethod.ByBackpropagation);

            Assert.IsTrue(teacher.UseRegularization);

            double error = 1.0;
            for (int i = 0; i < 500; i++)
                error = teacher.RunEpoch(input, output);

            double[][] actual = new double[output.Length][];

            for (int i = 0; i < input.Length; i++)
                actual[i] = network.Compute(input[i]);

            for (int i = 0; i < input.Length; i++)
                Assert.AreEqual(Math.Sign(output[i][0]), Math.Sign(actual[i][0]));
        }
開發者ID:RLaumeyer,項目名稱:framework,代碼行數:29,代碼來源:LevenbergMarquardtLearningTest.cs

示例6: RunEpochTest1

        public void RunEpochTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            double[][] input = 
            {
                new double[] { -1, -1 },
                new double[] { -1,  1 },
                new double[] {  1, -1 },
                new double[] {  1,  1 }
            };

            double[][] output =
            {
                new double[] { -1 },
                new double[] {  1 },
                new double[] {  1 },
                new double[] { -1 }
            };

            Neuron.RandGenerator = new ThreadSafeRandom(0);

            ActivationNetwork network = new ActivationNetwork(
                   new BipolarSigmoidFunction(2), 2, 2, 1);

            var teacher = new LevenbergMarquardtLearning(network,
                false, JacobianMethod.ByFiniteDifferences);

            double error = 1.0;
            while (error > 1e-5)
                error = teacher.RunEpoch(input, output);

            for (int i = 0; i < input.Length; i++)
                Assert.AreEqual(network.Compute(input[i])[0], output[i][0], 0.1);
        }
開發者ID:RLaumeyer,項目名稱:framework,代碼行數:35,代碼來源:LevenbergMarquardtLearningTest.cs

示例7: computeError

        private static double computeError(double[][] inputs, double[][] outputs, ActivationNetwork ann)
        {
            // Compute the machine outputs
            int miss = 0;
            for (int i = 0; i < inputs.Length; i++)
            {
                var y = System.Math.Sign(ann.Compute(inputs[i])[0]);
                var o = outputs[i][0];
                if (y != o) miss++;
            }

            return (double)miss / inputs.Length;
        }
開發者ID:Bruhankovi4,項目名稱:Emotyper,代碼行數:13,代碼來源:MainForm.cs

示例8: SearchSolution

        // Worker thread
        void SearchSolution()
        {
            // number of learning samples
            int samples = data.GetLength(0);
            // data transformation factor
            double yFactor = 1.7 / chart.RangeY.Length;
            double yMin = chart.RangeY.Min;
            double xFactor = 2.0 / chart.RangeX.Length;
            double xMin = chart.RangeX.Min;

            // prepare learning data
            double[][] input = new double[samples][];
            double[][] output = new double[samples][];

            for (int i = 0; i < samples; i++)
            {
                input[i] = new double[1];
                output[i] = new double[1];

                // set input
                input[i][0] = (data[i, 0] - xMin) * xFactor - 1.0;
                // set output
                output[i][0] = (data[i, 1] - yMin) * yFactor - 0.85;
            }

            // create multi-layer neural network
            ActivationNetwork network = new ActivationNetwork(
                new BipolarSigmoidFunction(sigmoidAlphaValue),
                1, neuronsInFirstLayer, 1);

            if (useNguyenWidrow)
            {
                NguyenWidrow initializer = new NguyenWidrow(network);
                initializer.Randomize();
            }

            // create teacher
            var teacher = new ParallelResilientBackpropagationLearning(network);

            // iterations
            int iteration = 1;

            // solution array
            double[,] solution = new double[50, 2];
            double[] networkInput = new double[1];

            // calculate X values to be used with solution function
            for (int j = 0; j < 50; j++)
            {
                solution[j, 0] = chart.RangeX.Min + (double)j * chart.RangeX.Length / 49;
            }

            // loop
            while (!needToStop)
            {
                // run epoch of learning procedure
                double error = teacher.RunEpoch(input, output) / samples;

                // calculate solution
                for (int j = 0; j < 50; j++)
                {
                    networkInput[0] = (solution[j, 0] - xMin) * xFactor - 1.0;
                    solution[j, 1] = (network.Compute(networkInput)[0] + 0.85) / yFactor + yMin;
                }
                chart.UpdateDataSeries("solution", solution);
                // calculate error
                double learningError = 0.0;
                for (int j = 0, k = data.GetLength(0); j < k; j++)
                {
                    networkInput[0] = input[j][0];
                    learningError += Math.Abs(data[j, 1] - ((network.Compute(networkInput)[0] + 0.85) / yFactor + yMin));
                }

                // set current iteration's info
                SetText(currentIterationBox, iteration.ToString());
                SetText(currentErrorBox, learningError.ToString("F3"));

                // increase current iteration
                iteration++;

                // check if we need to stop
                if ((iterations != 0) && (iteration > iterations))
                    break;
            }


            // enable settings controls
            EnableControls(true);
        }
開發者ID:natepan,項目名稱:framework,代碼行數:90,代碼來源:MainForm.cs

示例9: SearchSolution

        // Worker thread
        void SearchSolution()
        {
            // number of learning samples
            int samples = data.GetLength(0);

            // prepare learning data
            DoubleRange unit = new DoubleRange(-1, 1);
            double[][] input = Tools.Scale(from: xRange, to: unit, x: data.GetColumn(0)).ToArray();
            double[][] output = Tools.Scale(from: yRange, to: unit, x: data.GetColumn(1)).ToArray();


            // create multi-layer neural network
            ActivationNetwork network = new ActivationNetwork(
                new BipolarSigmoidFunction(sigmoidAlphaValue),
                1, neuronsInFirstLayer, 1);

            if (useNguyenWidrow)
            {
                new NguyenWidrow(network).Randomize();
            }

            // create teacher
            var teacher = new ParallelResilientBackpropagationLearning(network);

            // iterations
            int iteration = 1;

            // solution array
            double[,] solution = new double[samples, 2];


            // loop
            while (!needToStop)
            {
                // run epoch of learning procedure
                double error = teacher.RunEpoch(input, output) / samples;

                // calculate solution
                for (int j = 0; j < samples; j++)
                {
                    double x = input[j][0];
                    double y = network.Compute(new[] { x })[0];
                    solution[j, 0] = Tools.Scale(from: unit, to: xRange, x: x);
                    solution[j, 1] = Tools.Scale(from: unit, to: yRange, x: y);
                }

                chart.UpdateDataSeries("solution", solution);

                // calculate error
                double learningError = 0.0;
                for (int j = 0; j < samples; j++)
                {
                    double x = input[j][0];
                    double expected = data[j, 1];
                    double actual = network.Compute(new[] { x })[0];
                    learningError += Math.Abs(expected - actual);
                }

                // set current iteration's info
                SetText(currentIterationBox, iteration.ToString());
                SetText(currentErrorBox, learningError.ToString("F3"));

                // increase current iteration
                iteration++;

                // check if we need to stop
                if ((iterations != 0) && (iteration > iterations))
                    break;
            }


            // enable settings controls
            EnableControls(true);
        }
開發者ID:RLaumeyer,項目名稱:framework,代碼行數:75,代碼來源:Approximation.cs

示例10: SearchSolution

        // Worker thread
        void SearchSolution()
        {
            // number of learning samples
            int samples = data.Length - predictionSize - windowSize;
            // data transformation factor
            double factor = 1.7 / chart.RangeY.Length;
            double yMin = chart.RangeY.Min;
            // prepare learning data
            double[][] input = new double[samples][];
            double[][] output = new double[samples][];

            for (int i = 0; i < samples; i++)
            {
                input[i] = new double[windowSize];
                output[i] = new double[1];

                // set input
                for (int j = 0; j < windowSize; j++)
                {
                    input[i][j] = (data[i + j] - yMin) * factor - 0.85;
                }
                // set output
                output[i][0] = (data[i + windowSize] - yMin) * factor - 0.85;
            }

            // create multi-layer neural network
            ActivationNetwork network = new ActivationNetwork(
                new BipolarSigmoidFunction(sigmoidAlphaValue),
                windowSize, windowSize * 2, 1);

            // create teacher
            var teacher = new ParallelResilientBackpropagationLearning(network);

            teacher.Reset(initialStep);

            // run at least one backpropagation epoch
            //teacher2.RunEpoch(input, output);

            // iterations
            int iteration = 1;

            // solution array
            int solutionSize = data.Length - windowSize;
            double[,] solution = new double[solutionSize, 2];
            double[] networkInput = new double[windowSize];

            // calculate X values to be used with solution function
            for (int j = 0; j < solutionSize; j++)
            {
                solution[j, 0] = j + windowSize;
            }

            // loop
            while (!needToStop)
            {
                // run epoch of learning procedure
                double error = teacher.RunEpoch(input, output) / samples;

                // calculate solution and learning and prediction errors
                double learningError = 0.0;
                double predictionError = 0.0;
                // go through all the data
                for (int i = 0, n = data.Length - windowSize; i < n; i++)
                {
                    // put values from current window as network's input
                    for (int j = 0; j < windowSize; j++)
                    {
                        networkInput[j] = (data[i + j] - yMin) * factor - 0.85;
                    }

                    // evalue the function
                    solution[i, 1] = (network.Compute(networkInput)[0] + 0.85) / factor + yMin;

                    // calculate prediction error
                    if (i >= n - predictionSize)
                    {
                        predictionError += Math.Abs(solution[i, 1] - data[windowSize + i]);
                    }
                    else
                    {
                        learningError += Math.Abs(solution[i, 1] - data[windowSize + i]);
                    }
                }
                // update solution on the chart
                chart.UpdateDataSeries("solution", solution);

                // set current iteration's info
                SetText(currentIterationBox, iteration.ToString());
                SetText(currentLearningErrorBox, learningError.ToString("F3"));
                SetText(currentPredictionErrorBox, predictionError.ToString("F3"));

                // increase current iteration
                iteration++;

                // check if we need to stop
                if ((iterations != 0) && (iteration > iterations))
                    break;
            }

//.........這裏部分代碼省略.........
開發者ID:xyicheng,項目名稱:Accord,代碼行數:101,代碼來源:MainForm.cs

示例11: Prever

        /// <summary>
        /// Faz a previsão de pontos inéditos a rede neural treinada.
        /// </summary>
        /// <param name="dadosBase">Dados a serem comparados com os previstos.</param>
        /// <param name="dadosAuxiliares">Dados prévios aos dados base. Para Validação: dados de treinamento. Para Teste: dados de validação.</param>
        /// <param name="indiceID">Indice em que se inicia os dados base em relação aos dados totais. Para validação: tamanho dos dados de treinamento. Para teste: tamanho dos dados de treinamento somado ao tamanho dos de teste.</param>
        /// <returns></returns>
        private List<double> Prever(List<double> dadosBase, List<double> dadosAuxiliares, int indiceID)
        {
            network = (ActivationNetwork)ActivationNetwork.Load(@"C:\Users\Paulo\Desktop\NetworkTest.bin");

            //criação da lista de dados provisória usada na previsão
            List<double> dadosPrevisao = new List<double>();

            List<double> diferenca = new List<double>();

            //lista contendo todos os ids de 1 a 52
            List<int> ids = Serie.Ids;
            //variavel que possuirá o id binário
            int[] id = new int[6];

            int tamanhoAux = (dadosAuxiliares.Count);

            //inicio do processo de adição de dados à lista fazendo que
            //o primeiro ponto previsto seja exatamente o ultimo dos dados auxiliares
            int con = (dadosAuxiliares.Count) - windowSize - 1;

            for (int i = con; i < tamanhoAux; i++)
            {
                //adiciona os valosres de data, a lista de dados para treino primeiro
                dadosPrevisao.Add(dadosAuxiliares[i]);
            }

            //definição do tamanho da solução, deve ser do tamanho do teste mais um
            int solutionSize = dadosBase.Count + 1;
            List<double> solution = new List<double>();

            //definição do tamanho da entrada da rede neural para a previsão
            double[] networkInput = new double[windowSize + predictionSize * 6];

            //variavel auxiliar para o id binário
            int contador = 0;

            con = indiceID - windowSize - 1;

            //inicia processo de predição deslocando de um por um os pontos previstos
            for (int i = 0, n = dadosBase.Count + 1; i < n; i = i + predictionSize)
            {
                int a = windowSize;
                contador = 0;
                // seta os valores da atual janela de previsão como entrada da rede neural
                for (int j = 0; j < windowSize + predictionSize; j++)
                {
                    if (j < windowSize)
                    {
                        //entrada tem de ser formatada
                        networkInput[j] = (dadosPrevisao[i + j] - Serie.Min) * fatorNormal - 1.0;
                    }
                    else
                    {
                        id = CUtil.ConversaoBinario(ids[con + i + a]);
                        a++;

                        for (int c = 0; c < 6; c++)
                        {
                            networkInput[windowSize + contador] = id[c];
                            contador++;
                        }
                    }
                }//fim do for interno

                for (int k = 0; k < network.Compute(networkInput).Length; k++)
                {
                    if ((i + k) < solutionSize)
                    {
                        diferenca.Add((network.Compute(networkInput)[k] + 1.0) / fatorNormal + Serie.Min);
                        dadosPrevisao.Add((network.Compute(networkInput)[k] + 1.0) / fatorNormal + Serie.Min);
                    }
                }

            }//fim do for externo

            solution = Serie.DiferencaInversa(diferenca, Serie.Dados[indiceID, 1]);
            solution.RemoveAt(0);

            return solution;
        }
開發者ID:fernandarp,項目名稱:GICA_RNA,代碼行數:87,代碼來源:CRedeNeural.cs

示例12: MulticlassTest1

        public void MulticlassTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            // Suppose we would like to teach a network to recognize 
            // the following input vectors into 3 possible classes:
            //
            double[][] inputs =
            {
                new double[] { 0, 1, 1, 0 }, // 0
                new double[] { 0, 1, 0, 0 }, // 0
                new double[] { 0, 0, 1, 0 }, // 0
                new double[] { 0, 1, 1, 0 }, // 0
                new double[] { 0, 1, 0, 0 }, // 0
                new double[] { 1, 0, 0, 0 }, // 1
                new double[] { 1, 0, 0, 0 }, // 1
                new double[] { 1, 0, 0, 1 }, // 1
                new double[] { 0, 0, 0, 1 }, // 1
                new double[] { 0, 0, 0, 1 }, // 1
                new double[] { 1, 1, 1, 1 }, // 2
                new double[] { 1, 0, 1, 1 }, // 2
                new double[] { 1, 1, 0, 1 }, // 2
                new double[] { 0, 1, 1, 1 }, // 2
                new double[] { 1, 1, 1, 1 }, // 2
            };

            int[] classes =
            {
                0, 0, 0, 0, 0,
                1, 1, 1, 1, 1,
                2, 2, 2, 2, 2,
            };

            // First we have to convert this problem into a way that  the neural
            // network can handle. The first step is to expand the classes into 
            // indicator vectors, where a 1 into a position signifies that this
            // position indicates the class the sample belongs to.
            //
            double[][] outputs = Accord.Statistics.Tools.Expand(classes, -1, +1);

            // Create an activation function for the net
            var function = new BipolarSigmoidFunction();

            // Create an activation network with the function and
            //  4 inputs, 5 hidden neurons and 3 possible outputs:
            var network = new ActivationNetwork(function, 4, 5, 3);

            // Randomly initialize the network
            new NguyenWidrow(network).Randomize();

            // Teach the network using parallel Rprop:
            var teacher = new ParallelResilientBackpropagationLearning(network);

            double error = 1.0;
            while (error > 1e-5)
                error = teacher.RunEpoch(inputs, outputs);


            // Checks if the network has learned
            for (int i = 0; i < inputs.Length; i++)
            {
                double[] answer = network.Compute(inputs[i]);

                int expected = classes[i];
                int actual; answer.Max(out actual);

                Assert.AreEqual(expected, actual, 0.01);
            }
        }
開發者ID:CanerPatir,項目名稱:framework,代碼行數:69,代碼來源:ResilientPropagationLearningTest.cs


注:本文中的ActivationNetwork.Compute方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。