當前位置: 首頁>>代碼示例>>C#>>正文


C# ActivationNetwork類代碼示例

本文整理匯總了C#中ActivationNetwork的典型用法代碼示例。如果您正苦於以下問題:C# ActivationNetwork類的具體用法?C# ActivationNetwork怎麽用?C# ActivationNetwork使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


ActivationNetwork類屬於命名空間,在下文中一共展示了ActivationNetwork類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: BackPropagationLearning

		/// <summary>
		/// Initializes a new instance of the <see cref="BackPropagationLearning"/> class
		/// </summary>
		/// 
		/// <param name="network">Network to teach</param>
		/// 
		public BackPropagationLearning( ActivationNetwork network )
		{
			this.network = network;

			// create error and deltas arrays
			neuronErrors = new double[network.LayersCount][];
			weightsUpdates = new double[network.LayersCount][][];
			thresholdsUpdates = new double[network.LayersCount][];

			// initialize errors and deltas arrays for each layer
			for ( int i = 0, n = network.LayersCount; i < n; i++ )
			{
				Layer layer = network[i];

				neuronErrors[i] = new double[layer.NeuronsCount];
				weightsUpdates[i] = new double[layer.NeuronsCount][];
				thresholdsUpdates[i] = new double[layer.NeuronsCount];

				// for each neuron
				for ( int j = 0; j < layer.NeuronsCount; j++ )
				{
					weightsUpdates[i][j] = new double[layer.InputsCount];
				}
			}
		}
開發者ID:xieguigang,項目名稱:Reference_SharedLib,代碼行數:31,代碼來源:BackPropagationLearning.cs

示例2: RunEpochTest1

        public void RunEpochTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            double[][] input = 
            {
                new double[] { -1, -1 },
                new double[] { -1,  1 },
                new double[] {  1, -1 },
                new double[] {  1,  1 }
            };

            double[][] output =
            {
                new double[] { -1 },
                new double[] {  1 },
                new double[] {  1 },
                new double[] { -1 }
            };

            Neuron.RandGenerator = new ThreadSafeRandom(0);

            ActivationNetwork network = new ActivationNetwork(
                   new BipolarSigmoidFunction(2), 2, 2, 1);

            var teacher = new LevenbergMarquardtLearning(network,
                false, JacobianMethod.ByFiniteDifferences);

            double error = 1.0;
            while (error > 1e-5)
                error = teacher.RunEpoch(input, output);

            for (int i = 0; i < input.Length; i++)
                Assert.AreEqual(network.Compute(input[i])[0], output[i][0], 0.1);
        }
開發者ID:qusma,項目名稱:framework,代碼行數:35,代碼來源:LevenbergMarquardtLearningTest.cs

示例3: MulticlassTest1

        public void MulticlassTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);
            Neuron.RandGenerator = new ThreadSafeRandom(0);


            int numberOfInputs = 3;
            int numberOfClasses = 4;
            int hiddenNeurons = 5;

            double[][] input = 
            {
                new double[] { -1, -1, -1 }, // 0
                new double[] { -1,  1, -1 }, // 1
                new double[] {  1, -1, -1 }, // 1
                new double[] {  1,  1, -1 }, // 0
                new double[] { -1, -1,  1 }, // 2
                new double[] { -1,  1,  1 }, // 3
                new double[] {  1, -1,  1 }, // 3
                new double[] {  1,  1,  1 }  // 2
            };

            int[] labels =
            {
                0,
                1,
                1,
                0,
                2,
                3,
                3,
                2,
            };

            double[][] outputs = Accord.Statistics.Tools
                .Expand(labels, numberOfClasses, -1, 1);

            var function = new BipolarSigmoidFunction(2);
            var network = new ActivationNetwork(function,
                numberOfInputs, hiddenNeurons, numberOfClasses);

            new NguyenWidrow(network).Randomize();

            var teacher = new LevenbergMarquardtLearning(network);

            double error = Double.PositiveInfinity;
            for (int i = 0; i < 10; i++)
                error = teacher.RunEpoch(input, outputs);

            for (int i = 0; i < input.Length; i++)
            {
                int answer;
                double[] output = network.Compute(input[i]);
                double response = output.Max(out answer);

                int expected = labels[i];
                Assert.AreEqual(expected, answer);
            }
        }
開發者ID:RLaumeyer,項目名稱:framework,代碼行數:59,代碼來源:LevenbergMarquardtLearningTest.cs

示例4: GaussianWeights

        /// <summary>
        ///   Constructs a new Gaussian Weight initialization.
        /// </summary>
        /// 
        /// <param name="network">The activation network whose weights will be initialized.</param>
        /// <param name="stdDev">The standard deviation to be used. Common values lie in the 0.001-
        /// 0.1 range. Default is 0.1.</param>
        /// 
        public GaussianWeights(ActivationNetwork network, double stdDev = 0.1)
        {
            this.network = network;

            this.random = new GaussianGenerator(0f, (float)stdDev, Accord.Math.Tools.Random.Next());

            this.UpdateThresholds = false;
        }
開發者ID:qusma,項目名稱:framework,代碼行數:16,代碼來源:GaussianWeights.cs

示例5: DeltaRuleLearning

        /// <summary>
        /// Initializes a new instance of the <see cref="DeltaRuleLearning"/> class.
        /// </summary>
        /// 
        /// <param name="network">Network to teach.</param>
        /// 
        /// <exception cref="ArgumentException">Invalid nuaral network. It should have one layer only.</exception>
        /// 
        public DeltaRuleLearning( ActivationNetwork network )
        {
            // check layers count
            if ( network.Layers.Length != 1 )
            {
                throw new ArgumentException( "Invalid nuaral network. It should have one layer only." );
            }

            this.network = network;
        }
開發者ID:accord-net,項目名稱:framework,代碼行數:18,代碼來源:DeltaRuleLearning.cs

示例6: NguyenWidrow

        /// <summary>
        ///   Constructs a new Nguyen-Widrow Weight initialization.
        /// </summary>
        /// 
        /// <param name="network">The activation network whose weights will be initialized.</param>
        /// 
        public NguyenWidrow(ActivationNetwork network)
        {
            this.network = network;

            int hiddenNodes = network.Layers[0].Neurons.Length;
            int inputNodes = network.Layers[0].InputsCount;

            randRange = new Range(-0.5f, 0.5f);
            beta = 0.7 * Math.Pow(hiddenNodes, 1.0 / inputNodes);
        }
開發者ID:qusma,項目名稱:framework,代碼行數:16,代碼來源:NguyenWidrow.cs

示例7: AnnAgent

		public AnnAgent(bool learn, int boardSize, byte player = 1)
		{
			learning = learn;
			playerNumber = player;
			int boardFields = boardSize * boardSize;
			if(File.Exists("ann" + boardSize + ".bin"))
				network = (ActivationNetwork)Serialization.LoadNetwork("ann" + boardSize + ".bin");
			else
				network = new ActivationNetwork(new BipolarSigmoidFunction(), boardFields, 5, boardFields * 2);
			backProp = new BackPropagationLearning(network);
			teacher = new MinimaxAgent(2, player);
		}
開發者ID:Armienn,項目名稱:Virus,代碼行數:12,代碼來源:ANNAgent.cs

示例8: EvolutionaryFitness

        /// <summary>
        /// Initializes a new instance of the <see cref="EvolutionaryFitness"/> class.
        /// </summary>
        /// 
        /// <param name="network">Neural network for which fitness will be calculated.</param>
        /// <param name="input">Input data samples for neural network.</param>
        /// <param name="output">Output data sampels for neural network (desired output).</param>
        /// 
        /// <exception cref="ArgumentException">Length of inputs and outputs arrays must be equal and greater than 0.</exception>
        /// <exception cref="ArgumentException">Length of each input vector must be equal to neural network's inputs count.</exception>
        /// 
        public EvolutionaryFitness( ActivationNetwork network, double[][] input, double[][] output )
        {
            if ( ( input.Length == 0 ) || ( input.Length != output.Length ) )
            {
                throw new ArgumentException( "Length of inputs and outputs arrays must be equal and greater than 0." );
            }

            if ( network.InputsCount != input[0].Length )
            {
                throw new ArgumentException( "Length of each input vector must be equal to neural network's inputs count." );
            }

            this.network = network;
            this.input = input;
            this.output = output;
        }
開發者ID:accord-net,項目名稱:framework,代碼行數:27,代碼來源:EvolutionaryFitness.cs

示例9: RunEpochTest1

        public void RunEpochTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            double[][] input = 
            {
                new double[] { -1, -1 },
                new double[] { -1,  1 },
                new double[] {  1, -1 },
                new double[] {  1,  1 }
            };

            double[][] output =
            {
                new double[] { -1 },
                new double[] {  1 },
                new double[] {  1 },
                new double[] { -1 }
            };

            Neuron.RandGenerator = new ThreadSafeRandom(0);
            ActivationNetwork network = new ActivationNetwork(
                   new BipolarSigmoidFunction(2), 2, 2, 1);

            var teacher = new ParallelResilientBackpropagationLearning(network);

            double error = 1.0;
            while (error > 1e-5)
                error = teacher.RunEpoch(input, output);

            for (int i = 0; i < input.Length; i++)
            {
                double actual = network.Compute(input[i])[0];
                double expected = output[i][0];

                Assert.AreEqual(expected, actual, 0.01);
                Assert.IsFalse(Double.IsNaN(actual));
            }
        }
開發者ID:CanerPatir,項目名稱:framework,代碼行數:39,代碼來源:ResilientPropagationLearningTest.cs

示例10: TrainNewModel

            public IForecastingModel TrainNewModel(double[][] iInput, double[][] iOutput)
            {
                int inputSize = iInput[0].Length, samplesNum = iOutput.Length;
                if (samplesNum != iInput.Length)
                    throw new ArgumentException();

                for (int i = 0; i < samplesNum;++i)
                    if (iInput[i].Length != inputSize || iOutput[i].Length != 1) //iInput isn't a square matrix or iOutput isn't a vector
                        throw new ArgumentException();

                int[] neuronsCount = (int[]) ModelParametersDict[NeuronsInLayersKey];
                string activationFunction = (string) ModelParametersDict[ActivationFunctionKey];
                long maxIterNum = (long) ModelParametersDict[MaxIterationsNumberKey];
                double stopError = (double)ModelParametersDict[StopErrorKey];

                ActivationNetwork netToTrain = new ActivationNetwork(ActivationFunctionsDict[activationFunction], inputSize, neuronsCount);
                DataNormalizer normalizer = new DataNormalizer(iInput.Concat(iOutput).ToArray());
                IForecastingModel aModel = new ANNforecastingModel(netToTrain, normalizer);
                ISupervisedLearning teacher = new ResilientBackpropagationLearning(netToTrain);

                double[][] trainInputSet, trainOutputSet;
                TrainingSubsetGenerator.GenerateRandomly(iInput, iOutput, out trainInputSet, out trainOutputSet, iMultiplier: TrainSubsetMultiplier);

                trainInputSet = normalizer.Normalize(trainInputSet); trainOutputSet = normalizer.Normalize(trainOutputSet);

                long epochsCount = 0;
                double nextError = ErrorCalculator.CalculateMSE(aModel, iInput, iOutput), prevError;
                do
                {
                    prevError = nextError;
                    teacher.RunEpoch(trainInputSet, trainOutputSet);
                    nextError = ErrorCalculator.CalculateMSE(aModel, iInput, iOutput);
                }
                while (epochsCount++ <= maxIterNum && Math.Abs(prevError - nextError) >= stopError);
                return aModel;
            }
開發者ID:vladislav-horbatiuk,項目名稱:time-series-forecasting,代碼行數:36,代碼來源:ANNmodelBuilder.cs

示例11: EvolutionaryLearning

        /// <summary>
        /// Initializes a new instance of the <see cref="EvolutionaryLearning"/> class.
        /// </summary>
        /// 
        /// <param name="activationNetwork">Activation network to be trained.</param>
        /// <param name="populationSize">Size of genetic population.</param>
        /// <param name="chromosomeGenerator">Random numbers generator used for initialization of genetic
        /// population representing neural network's weights and thresholds (see <see cref="DoubleArrayChromosome.chromosomeGenerator"/>).</param>
        /// <param name="mutationMultiplierGenerator">Random numbers generator used to generate random
        /// factors for multiplication of network's weights and thresholds during genetic mutation
        /// (ses <see cref="DoubleArrayChromosome.mutationMultiplierGenerator"/>.)</param>
        /// <param name="mutationAdditionGenerator">Random numbers generator used to generate random
        /// values added to neural network's weights and thresholds during genetic mutation
        /// (see <see cref="DoubleArrayChromosome.mutationAdditionGenerator"/>).</param>
        /// <param name="selectionMethod">Method of selection best chromosomes in genetic population.</param>
        /// <param name="crossOverRate">Crossover rate in genetic population (see
        /// <see cref="Population.CrossoverRate"/>).</param>
        /// <param name="mutationRate">Mutation rate in genetic population (see
        /// <see cref="Population.MutationRate"/>).</param>
        /// <param name="randomSelectionRate">Rate of injection of random chromosomes during selection
        /// in genetic population (see <see cref="Population.RandomSelectionPortion"/>).</param>
        /// 
        public EvolutionaryLearning( ActivationNetwork activationNetwork, int populationSize,
            IRandomNumberGenerator chromosomeGenerator,
            IRandomNumberGenerator mutationMultiplierGenerator,
            IRandomNumberGenerator mutationAdditionGenerator,
            ISelectionMethod selectionMethod,
            double crossOverRate, double mutationRate, double randomSelectionRate )
        {
            // Check of assumptions during debugging only
            Debug.Assert( activationNetwork != null );
            Debug.Assert( populationSize > 0 );
            Debug.Assert( chromosomeGenerator != null );
            Debug.Assert( mutationMultiplierGenerator != null );
            Debug.Assert( mutationAdditionGenerator != null );
            Debug.Assert( selectionMethod != null );
            Debug.Assert( crossOverRate >= 0.0 && crossOverRate <= 1.0 );
            Debug.Assert( mutationRate >= 0.0 && crossOverRate <= 1.0 );
            Debug.Assert( randomSelectionRate >= 0.0 && randomSelectionRate <= 1.0 );

            // networks's parameters
            this.network = activationNetwork;
            this.numberOfNetworksWeights = CalculateNetworkSize( activationNetwork );

            // population parameters
            this.populationSize = populationSize;
            this.chromosomeGenerator = chromosomeGenerator;
            this.mutationMultiplierGenerator = mutationMultiplierGenerator;
            this.mutationAdditionGenerator = mutationAdditionGenerator;
            this.selectionMethod = selectionMethod;
            this.crossOverRate = crossOverRate;
            this.mutationRate = mutationRate;
            this.randomSelectionRate = randomSelectionRate;
        }
開發者ID:EnergonV,項目名稱:BestCS,代碼行數:54,代碼來源:EvolutionaryLearning.cs

示例12: RunEpochTest4

        public void RunEpochTest4()
        {
            Accord.Math.Tools.SetupGenerator(0);

            double[][] input = 
            {
                new double[] { 0, 0 },
            };

            double[][] output =
            {
                new double[] { 0 },
            };

            Neuron.RandGenerator = new ThreadSafeRandom(0);
            ActivationNetwork network = new ActivationNetwork(
                   new BipolarSigmoidFunction(2), 2, 1);

            var teacher = new LevenbergMarquardtLearning(network,
                true, JacobianMethod.ByBackpropagation);

            double error = 1.0;
            for (int i = 0; i < 1000; i++)
                error = teacher.RunEpoch(input, output);

            for (int i = 0; i < input.Length; i++)
                Assert.AreEqual(network.Compute(input[i])[0], output[i][0], 0.1);
        }
開發者ID:RLaumeyer,項目名稱:framework,代碼行數:28,代碼來源:LevenbergMarquardtLearningTest.cs

示例13: ConstructorTest

        public void ConstructorTest()
        {
            // Four training samples of the xor function

            // two inputs (x and y)
            double[][] input = 
            {
                new double[] { -1, -1 },
                new double[] { -1,  1 },
                new double[] {  1, -1 },
                new double[] {  1,  1 }
            };

            // one output (z = x ^ y)
            double[][] output = 
            {
                new double[] { -1 },
                new double[] {  1 },
                new double[] {  1 },
                new double[] { -1 }
            };


            // create multi-layer neural network
            ActivationNetwork network = new ActivationNetwork(
                   new BipolarSigmoidFunction(2), // use a bipolar sigmoid activation function
                   2, // two inputs
                   3, // three hidden neurons
                   1  // one output neuron
                   );

            // create teacher
            LevenbergMarquardtLearning teacher = new LevenbergMarquardtLearning(
                network, // the neural network
                false,   // whether or not to use Bayesian regularization
                JacobianMethod.ByBackpropagation // Jacobian calculation method
                );


            // set learning rate and momentum
            teacher.LearningRate = 0.1f;

            // start the supervisioned learning
            for (int i = 0; i < 1000; i++)
            {
                double error = teacher.RunEpoch(input, output);
            }

            // If we reached here, the constructor test has passed.
        }
開發者ID:RLaumeyer,項目名稱:framework,代碼行數:50,代碼來源:LevenbergMarquardtLearningTest.cs

示例14: SearchSolution

		// Worker thread
		void SearchSolution( )
		{
			// initialize input and output values
			double[][] input = null;
			double[][] output = null;

			if ( sigmoidType == 0 )
			{
				// unipolar data
				input = new double[4][] {
											new double[] {0, 0},
											new double[] {0, 1},
											new double[] {1, 0},
											new double[] {1, 1}
										};
				output = new double[4][] {
											 new double[] {0},
											 new double[] {1},
											 new double[] {1},
											 new double[] {0}
										 };
			}
			else
			{
				// bipolar data
				input = new double[4][] {
											new double[] {-1, -1},
											new double[] {-1,  1},
											new double[] { 1, -1},
											new double[] { 1,  1}
										};
				output = new double[4][] {
											 new double[] {-1},
											 new double[] { 1},
											 new double[] { 1},
											 new double[] {-1}
										 };
			}

			// create neural network
			ActivationNetwork	network = new ActivationNetwork(
				( sigmoidType == 0 ) ? 
					(IActivationFunction) new SigmoidFunction( sigmoidAlphaValue ) :
					(IActivationFunction) new BipolarSigmoidFunction( sigmoidAlphaValue ),
				2, 2, 1 );

			// create teacher
            var teacher = new ParallelResilientBackpropagationLearning(network);


            // set learning rate and momentum
            teacher.Reset(initialStep);


			// iterations
			int iteration = 0;

			// statistic files
			StreamWriter errorsFile = null;

			try
			{
				// check if we need to save statistics to files
				if ( saveStatisticsToFiles )
				{
					// open files
					errorsFile	= File.CreateText( "errors.csv" );
				}
				
				// erros list
				ArrayList errorsList = new ArrayList( );

				// loop
				while ( !needToStop )
				{
					// run epoch of learning procedure
					double error = teacher.RunEpoch( input, output );
					errorsList.Add( error );

					// save current error
					if ( errorsFile != null )
					{
						errorsFile.WriteLine( error );
					}				

					// show current iteration & error
                    SetText( currentIterationBox, iteration.ToString( ) );
                    SetText( currentErrorBox, error.ToString( ) );
					iteration++;

					// check if we need to stop
					if ( error <= learningErrorLimit )
						break;
				}

				// show error's dynamics
				double[,] errors = new double[errorsList.Count, 2];

				for ( int i = 0, n = errorsList.Count; i < n; i++ )
//.........這裏部分代碼省略.........
開發者ID:xyicheng,項目名稱:Accord,代碼行數:101,代碼來源:MainForm.cs

示例15: RunEpochTest3

        public void RunEpochTest3()
        {
            double[,] dataset = yinyang;

            double[][] input = dataset.GetColumns(0, 1).ToArray();
            double[][] output = dataset.GetColumn(2).ToArray();

            Neuron.RandGenerator = new ThreadSafeRandom(0);

            ActivationNetwork network = new ActivationNetwork(
                   new BipolarSigmoidFunction(2), 2, 5, 1);

            var teacher = new LevenbergMarquardtLearning(network,
                true, JacobianMethod.ByBackpropagation);

            Assert.IsTrue(teacher.UseRegularization);

            double error = 1.0;
            for (int i = 0; i < 500; i++)
                error = teacher.RunEpoch(input, output);

            double[][] actual = new double[output.Length][];

            for (int i = 0; i < input.Length; i++)
                actual[i] = network.Compute(input[i]);

            for (int i = 0; i < input.Length; i++)
                Assert.AreEqual(Math.Sign(output[i][0]), Math.Sign(actual[i][0]));
        }
開發者ID:RLaumeyer,項目名稱:framework,代碼行數:29,代碼來源:LevenbergMarquardtLearningTest.cs


注:本文中的ActivationNetwork類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。