本文整理匯總了C++中CBlob::MinX方法的典型用法代碼示例。如果您正苦於以下問題:C++ CBlob::MinX方法的具體用法?C++ CBlob::MinX怎麽用?C++ CBlob::MinX使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類CBlob
的用法示例。
在下文中一共展示了CBlob::MinX方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: getNearestBlob
CBlob getNearestBlob(CBlobResult blobs, coord coordinate){
int tot = blobs.GetNumBlobs();
CBlob Blob;
float distance[10]; // 10 è il numero massimo di blob trovabile in un video
float minimum;
coord tempCoord;
//Questo ciclo for fa la distanza manhattan tra le coordinate passate e tutti i blob catturati e crea il vettore con tutte le distanze.
for (int i=0; i<tot; i++){
Blob = blobs.GetBlob(i);
tempCoord.set( (int) Blob.MaxX(), (int) Blob.MinX(), (int) Blob.MaxY(), (int) Blob.MinY());
distance[i] = sqrt((double)(tempCoord.cX - coordinate.cX)*(tempCoord.cX - coordinate.cX) + (tempCoord.cY - coordinate.cY)*(tempCoord.cY - coordinate.cY));
}
int minDistanceId=0;
//Questo ciclo for becca la minima distanza fra tutte quelle calcolate
for (int j=0; j<tot; j++){
minimum = min( distance[j], distance[minDistanceId]);
if ( distance[j] == minimum ) minDistanceId = j;
}
//Ottenuta la minima distanza si va a ritornare il Blob corrispondente
Blob = blobs.GetBlob( minDistanceId );
//delete[] distance;
return Blob;
}
示例2: operator
/**
- FUNCTION: CBlobGetMaxYatMinX
- FUNCTIONALITY: Calculates the maximum Y on the minimum X
- PARAMETERS:
- RESULT:
- RESTRICTIONS:
- AUTHOR: Ricard Borràs
- CREATION DATE: 25-05-2005.
- MODIFICATION: Date. Author. Description.
*/
double CBlobGetMaxYatMinX::operator()(CBlob &blob)
{
double result = LONG_MIN;
CvSeqReader reader;
CvPoint actualPoint;
t_PointList externContour;
externContour = blob.GetExternalContour()->GetContourPoints();
if( !externContour ) return result;
cvStartReadSeq( externContour, &reader);
for( int i=0; i< externContour->total; i++)
{
CV_READ_SEQ_ELEM( actualPoint, reader);
if( (actualPoint.x == blob.MinX()) && (actualPoint.y > result) )
{
result = actualPoint.y;
}
}
return result;
}
示例3: operator
/**
- FUNCTION: CBlobGetMaxYatMinX
- FUNCTIONALITY: Calculates the maximum Y on the minimum X
- PARAMETERS:
- RESULT:
- RESTRICTIONS:
- AUTHOR: Ricard Borràs
- CREATION DATE: 25-05-2005.
- MODIFICATION: Date. Author. Description.
*/
double CBlobGetMaxYatMinX::operator()(CBlob &blob)
{
double result = LONG_MIN;
//CvSeqReader reader;
//CvPoint actualPoint;
t_PointList externContour;
externContour = blob.GetExternalContour()->GetContourPoints();
if( externContour.size()==0 ) return result;
t_PointList::iterator it=externContour.begin(),en=externContour.end();
for( it;it!=en;it++)
{
Point &actualPoint = *it;
if( (actualPoint.x == blob.MinX()) && (actualPoint.y > result) )
{
result = actualPoint.y;
}
}
return result;
}
示例4: extractBlob
coord extractBlob(CBlobResult blobs, coord selectedCoord){
coord coordinate;
CBlob Blob;
if ( blobs.GetNumBlobs()==0 ) {
coordinate.flag=false;
return coordinate;
}
else {
//!Get the blob info
Blob = getNearestBlob( blobs, selectedCoord);
//!Creating the coordinate struct
coordinate.set( (int) Blob.MaxX(), (int) Blob.MinX(), (int) Blob.MaxY(), (int) Blob.MinY());
return coordinate;
}
}
示例5: blobTracking
//==============================================================================
void PanTiltCameraClass::blobTracking(IplImage* hsv_mask,
IplImage* pFour,
IplImage* pImg)
{
//--- Get blobs and filter them using the blob area
CBlobResult blobs;
CBlob *currentBlob;
//--- Create a thresholded image and display image --------------------
//--- Creates binary image
IplImage* originalThr = cvCreateImage(cvGetSize(hsv_mask), IPL_DEPTH_8U,1);
//--- Create 3-channel image
IplImage* display = cvCreateImage(cvGetSize(hsv_mask),IPL_DEPTH_8U,3);
//--- Copies the original
cvMerge( hsv_mask, hsv_mask, hsv_mask, NULL, display );
//--- Makes a copy for processing
cvCopy(hsv_mask,originalThr);
//--- Find blobs in image ---------------------------------------------
int blobThreshold = 0;
bool blobFindMoments = true;
blobs = CBlobResult( originalThr, originalThr, blobThreshold, blobFindMoments);
//--- filters blobs according to size and radius constraints
blobs.Filter( blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, this->minBlobSize );
//--- display filtered blobs ------------------------------------------
//--- copies the original in (for background)
cvMerge( originalThr, originalThr, originalThr, NULL, display );
CvPoint pts[this->NUMBER_OF_CIRCLES];
//--- This sequence marks all the blobs
for (int i = 0; i < blobs.GetNumBlobs(); i++ )
{
currentBlob = blobs.GetBlob(i);
currentBlob->FillBlob( display, CV_RGB(0,0,255));
//--- Get blobs centerpoint
CvPoint bcg;
bcg.x = (int)(currentBlob->MinX()+((currentBlob->MaxX()-currentBlob->MinX())/2));
bcg.y = (int)(currentBlob->MinY()+((currentBlob->MaxY()-currentBlob->MinY())/2));
//--- Print the CG on the picture
char blobtext[40];
for(int k=0;k<this->NUMBER_OF_CIRCLES;k++)
{
sprintf(blobtext,"%d",k+1);
TargetReticle(display,&pts[k],blobtext,6,CV_RGB(255,0,0));
}//for
}//for each blob
//--- Set the ROI in the pFour image
cvSetImageROI(pFour,cvRect(pImg->width,pImg->height+80,pImg->width,pImg->height));
cvCopy(display,pFour);
//Reset region of interest
cvResetImageROI(display);
//Clean up
cvReleaseImage( &originalThr );
cvReleaseImage( &display);
}
示例6: cvCreateImage
IplImage* blobDetection2(IplImage* imgThreshRed, IplImage* imgThreshGreen) {
// get blobs and filter them using its area
int i, j;
// int areaBlob = 100;
float distMark = 10;
CBlobResult blobsRed, blobsGreen, whiteRedBlobs, whiteGreenBlobs;
CBlob *currentBlob;
double px, py;
// Create Image
IplImage* displayedImage = cvCreateImage(cvGetSize(imgThreshRed), IPL_DEPTH_8U, 3);
// find all the RED related blobs in the image
blobsRed = CBlobResult(imgThreshRed, NULL, 0);
// find all the GREEN related blobs in the image
blobsGreen = CBlobResult(imgThreshGreen, NULL, 0);
// select the ones with mean gray-level equal to 255 (white) and put
// them in the whiteBlobs variable
blobsRed.Filter(whiteRedBlobs, B_EXCLUDE, CBlobGetArea(), B_LESS, 1.0);
blobsGreen.Filter(whiteGreenBlobs, B_EXCLUDE, CBlobGetArea(), B_LESS, 1.0);
#ifdef DEBUG_PRINT
printf("White Blobs: %d\n", whiteBlobs.GetNumBlobs());
#endif
// display filtered blobs
cvMerge(imgThreshRed, imgThreshRed, imgThreshRed, NULL, displayedImage);
// RED
CvPoint2D32f redCenter[whiteRedBlobs.GetNumBlobs()];
for (i = 0; i < whiteRedBlobs.GetNumBlobs(); i++) {
currentBlob = whiteRedBlobs.GetBlob(i);
px = (currentBlob->MaxX() + currentBlob->MinX()) / 2.0;
py = (currentBlob->MaxY() + currentBlob->MinY()) / 2.0;
redCenter[i] = cvPoint2D32f(px, py);
#ifdef DEBUG_PRINT
printf("%2.2f\t%2.2f\n", px, py);
#endif
if (currentBlob->Area() > areaBlob) {
// Add Cross to the image
currentBlob->FillBlob(displayedImage, CV_RGB(255, 0, 0));
cvCircle(displayedImage, cvPointFrom32f(redCenter[i]), 2, cvScalar(255, 0, 0), 10, 8, 0);
}
}
// GREEN
CvPoint2D32f greenCenter[whiteGreenBlobs.GetNumBlobs()];
for (i = 0; i < whiteGreenBlobs.GetNumBlobs(); i++) {
currentBlob = whiteGreenBlobs.GetBlob(i);
px = (currentBlob->MaxX() + currentBlob->MinX()) / 2.0;
py = (currentBlob->MaxY() + currentBlob->MinY()) / 2.0;
greenCenter[i] = cvPoint2D32f(px, py);
#ifdef DEBUG_PRINT
printf("%2.2f\t%2.2f\n", px, py);
#endif
if (currentBlob->Area() > areaBlob) {
// Add Cross to the image
currentBlob->FillBlob(displayedImage, CV_RGB(255, 0, 0));
cvCircle(displayedImage, cvPointFrom32f(greenCenter[i]), 2, cvScalar(0, 255, 0), 10, 8, 0);
}
}
// Populating the list of potential robots
potRobList.robNum = 0;
for (i = 0; i < robMax; i++)
potRobList.robList[i].active = 0;
int redUsage[whiteRedBlobs.GetNumBlobs()];
int greenUsage[whiteGreenBlobs.GetNumBlobs()];
for (i = 0; i < whiteRedBlobs.GetNumBlobs(); i++)
redUsage[i] = 0;
for (j = 0; j < whiteGreenBlobs.GetNumBlobs(); j++)
greenUsage[j] = 0;
// Detect Robots
float distCenter[whiteRedBlobs.GetNumBlobs()][whiteGreenBlobs.GetNumBlobs()];
for (i = 0; i < min(whiteRedBlobs.GetNumBlobs(), robMax); i++) {
currentBlob = whiteRedBlobs.GetBlob(i);
if (currentBlob->Area() > areaBlob) {
for (j = 0; j < min(whiteGreenBlobs.GetNumBlobs(), robMax); j++) {
currentBlob = whiteGreenBlobs.GetBlob(j);
if (currentBlob->Area() > areaBlob) {
distCenter[i][j] = computeDist(redCenter[i], greenCenter[j]);
//printf("[%d] - [%d]: %2.2f\n", i, j, distCenter[i][j]);
//printf("[%d] - [%d]: %2.2f\n", i, j, distCenter[i][j]);
// Print a connection line if this could be a robot
if (redUsage[i] == 0 && greenUsage[j] == 0 && checkDistMarker(distCenter[i][j], distMark)) {
//.........這裏部分代碼省略.........
示例7: main
int main() {
CvPoint pt1,pt2;
CvRect regt;
CvPoint cir_center;
CvPoint frame_center;
CvPoint A,B,C,D;
CvPoint temp;
double angle,spinsize;
int cir_radius=1;
int frame_width=160, frame_height=120;
CvCapture* capture = cvCaptureFromCAM( CV_CAP_ANY );
if ( !capture ) {
fprintf(stderr, "ERROR: capture is NULL \n" );
getchar();
return -1;
}
cvSetCaptureProperty(capture,CV_CAP_PROP_FRAME_WIDTH,frame_width);// 120x160
cvSetCaptureProperty(capture,CV_CAP_PROP_FRAME_HEIGHT,frame_height);
//cvSetCaptureProperty(capture, CV_CAP_PROP_FPS,10);
// cvSetCaptureProperty(capture,CV_CAP_PROP_POS_FRAMES,5);
// Create a window in which the captured images will be presented
cvNamedWindow( "mywindow", CV_WINDOW_AUTOSIZE );
// Show the image captured from the camera in the window and repeat
while ( 1 ) {
// Get one frame
IplImage* frame = cvQueryFrame( capture );
if ( !frame ) {
fprintf( stderr, "ERROR: frame is null...\n" );
getchar();
break;
}
int modfheight, modfwidth;
modfheight = frame->height;
modfwidth = frame->width;
// create modified frame with 1/4th the original size
IplImage* modframe = cvCreateImage(cvSize((int)(modfwidth/4),(int)(modfheight/4)),frame->depth,frame->nChannels); //cvCreateImage(size of frame, depth, noofchannels)
cvResize(frame, modframe,CV_INTER_LINEAR);
// create HSV(Hue, Saturation, Value) frame
IplImage* hsvframe = cvCreateImage(cvGetSize(modframe),8, 3);
cvCvtColor(modframe, hsvframe, CV_BGR2HSV); //cvCvtColor(input frame,outputframe,method)
// create a frame within threshold.
IplImage* threshframe = cvCreateImage(cvGetSize(hsvframe),8,1);
cvInRangeS(hsvframe,cvScalar(15, 100, 100),cvScalar(60, 220, 220),threshframe); //cvInRangeS(input frame, cvScalar(min range),cvScalar(max range),output frame)
// created dilated image
IplImage* dilframe = cvCreateImage(cvGetSize(threshframe),8,1);
cvDilate(threshframe,dilframe,NULL,2); //cvDilate(input frame, output frame, mask, number of times to dilate)
CBlobResult blobs;
blobs = CBlobResult(dilframe,NULL,0); // CBlobresult(inputframe, mask, threshold) Will filter all white parts of image
blobs.Filter(blobs,B_EXCLUDE,CBlobGetArea(),B_LESS,50);//blobs.Filter(input, cond, criteria, cond, const) Filter all images whose area is less than 50 pixels
CBlob biggestblob;
blobs.GetNthBlob(CBlobGetArea(),0,biggestblob); //GetNthBlob(criteria, number, output) Get only the largest blob based on CblobGetArea()
// get 4 points to define the rectangle
pt1.x = biggestblob.MinX()*4;
pt1.y = biggestblob.MinY()*4;
pt2.x = biggestblob.MaxX()*4;
pt2.y = biggestblob.MaxY()*4;
cir_center.x=(pt1.x+pt2.x)/2;
cir_center.y=(pt1.y+pt2.y)/2;
frame_center.x=frame_width/2;
frame_center.y=frame_height/2;
A.x=frame_center.x-4;
A.y=frame_center.y;
B.x=frame_center.x+4;
B.y=frame_center.y;
C.y=frame_center.y-4;
C.x=frame_center.x;
D.y=frame_center.y+4;
D.x=frame_center.x;
cvRectangle(frame,pt1,pt2,cvScalar(255,0,0),1,8,0); // draw rectangle around the biggest blob
cvCircle( frame, cir_center, cir_radius, cvScalar(0,255,255), 1, 8, 0 ); // center point of the rectangle
cvLine(frame, A, B,cvScalar(255,0,255),2,8,0);
cvLine(frame, C, D,cvScalar(255,0,255),2,8,0);
if (cir_center.x!=0&&cir_center.y!=0){
spinsize=sqrt((cir_center.x-frame_center.x)*(cir_center.x-frame_center.x) +(cir_center.y-frame_center.y)*(cir_center.y-frame_center.y));
angle = atan2((double)cir_center.y-frame_center.y,(double)cir_center.x-frame_center.x);
temp.x=(int)(frame_center.x+spinsize/5*cos(angle+3.1416/4));
temp.y=(int)(frame_center.y+spinsize/5*sin(angle+3.1415/4));
cvLine(frame, temp, frame_center,cvScalar(0,255,0),1,8,0);
temp.x=(int)(frame_center.x+spinsize/5*cos(angle-3.1416/4));
temp.y=(int)(frame_center.y+spinsize/5*sin(angle-3.1415/4));
cvLine(frame, temp, frame_center,cvScalar(0,255,0),1,8,0);
cvLine(frame, cir_center, frame_center,cvScalar(0,255,0),1,8,0);
//cvCircle( frame, frame_center, cir_radius, cvScalar(0,255,255), 2, 8, 0 );
}
cvShowImage( "mywindow", frame); // show output image
// Do not release the frame!
//If ESC key pressed, Key=0x10001B under OpenCV 0.9.7(linux version),
//remove higher bits using AND operator
if ( (cvWaitKey(10) & 255) == 27 ) break;
}
// Release the capture device housekeeping
cvReleaseCapture( &capture );
cvDestroyWindow( "mywindow" );
return 0;
}
示例8: locator
void locator()
{
namedWindow("Tracking");
int hMin, hMax, sMin, sMax, vMin, vMax,area_min;
hMin = 0;
//hMax = 124; // night values/???
hMax = 255;
//sMin = 95;
sMin = 126;
sMax = 255;
//vMin = 139;
vMin = 173;
vMax = 255;
area_min = 100;
Mat smoothed, hsvImg, t_img;
createTrackbar("blob min area","Tracking" ,&area_min ,1000);
createTrackbar("Hue Min", "Tracking", &hMin, 255);
createTrackbar("Hue Max", "Tracking", &hMax, 255);
createTrackbar("Sat Min", "Tracking", &sMin, 255);
createTrackbar("Sat Max", "Tracking", &sMax, 255);
createTrackbar("Val Min", "Tracking", &vMin, 255);
createTrackbar("Val MaX", "Tracking", &vMax, 255);
while(ros::ok())
{
Mat source = imageB;
Mat copy = imageB.clone();
GaussianBlur(source, smoothed, Size(9,9), 4);
cvtColor(smoothed, hsvImg, CV_BGR2HSV);
inRange(hsvImg, Scalar(hMin, sMin, vMin), Scalar(hMax, sMax, vMax), t_img);
CBlobResult blob;
IplImage i_img = t_img;
blob = CBlobResult(&i_img,NULL,0);
int num_blobs = blob.GetNumBlobs();
blob.Filter(blob, B_INCLUDE, CBlobGetArea(), B_INSIDE, area_min, blob_area_absolute_max_);
num_blobs = blob.GetNumBlobs();
std::string reference_frame = "/virtual_table"; // Table frame at ball_radius above the actual table plane
tf::StampedTransform transform;
tf_.waitForTransform(reference_frame, model.tfFrame(), ros::Time(0), ros::Duration(0.5));
tf_.lookupTransform(reference_frame, model.tfFrame(), ros::Time(0), transform);
for(int i =0;i<num_blobs;i++)
{
CBlob* bl = blob.GetBlob(i);
Point2d uv(CBlobGetXCenter()(*bl), CBlobGetYCenter()(*bl));
//Use the width as the height
uv.y = bl->MinY() + (bl->MaxX() - bl->MinX()) * 0.5;
circle(copy,uv,50,Scalar(255,0,0),5);
cv::Point3d xyz;
model.projectPixelTo3dRay(uv, xyz);
// Intersect ray with plane in virtual table frame
//Origin of camera frame wrt virtual table frame
tf::Point P0 = transform.getOrigin();
//Point at end of unit ray wrt virtual table frame
tf::Point P1 = transform * tf::Point(xyz.x, xyz.y, xyz.z);
// Origin of virtual table frame
tf::Point V0 = tf::Point(0.0,0.0,0.0);
// normal to the table plane
tf::Vector3 n(0, 0, 1);
// finding scaling value
double scale = (n.dot(V0-P0))/(n.dot(P1-P0));
tf::Point ball_pos = P0 + (P1-P0)*scale;
cout <<ball_pos.x() << " " << ball_pos.y() << " " << ball_pos.z() <<endl;
}
imshow(WINDOW, copy);
waitKey(3);
imshow("edited", t_img);
waitKey(3);
ros::spinOnce();
}
}