对于某些调整参数,值的范围取决于数据维度(例如 mtry
)。如果参数值超出这些范围,某些包将会失败。由于模型可能会接收数据的重新采样版本,因此无法在模型拟合点之前设置这些范围。这些函数检查数据的可能范围并根据需要进行调整(带有警告)。
参数
- num_cols, num_rows
-
用户请求的参数值。
- source
-
拟合中使用的数据的 DataFrame 。如果源名为"data",则假定一列数据对应于一个结果(并被减去)。
- offset
-
从数据中可用行数中减去的数字。
例子
nearest_neighbor(neighbors= 100) %>%
set_engine("kknn") %>%
set_mode("regression") %>%
translate()
#> K-Nearest Neighbor Model Specification (regression)
#>
#> Main Arguments:
#> neighbors = 100
#>
#> Computational engine: kknn
#>
#> Model fit template:
#> kknn::train.kknn(formula = missing_arg(), data = missing_arg(),
#> ks = min_rows(100, data, 5))
library(ranger)
rand_forest(mtry = 2, min_n = 100, trees = 3) %>%
set_engine("ranger") %>%
set_mode("regression") %>%
fit(mpg ~ ., data = mtcars)
#> Warning: 100 samples were requested but there were 32 rows in the data. 32 will be used.
#> parsnip model object
#>
#> Ranger result
#>
#> Call:
#> ranger::ranger(x = maybe_data_frame(x), y = y, mtry = min_cols(~2, x), num.trees = ~3, min.node.size = min_rows(~100, x), num.threads = 1, verbose = FALSE, seed = sample.int(10^5, 1))
#>
#> Type: Regression
#> Number of trees: 3
#> Sample size: 32
#> Number of independent variables: 10
#> Mtry: 2
#> Target node size: 32
#> Variable importance mode: none
#> Splitrule: variance
#> OOB prediction error (MSE): 39.1275
#> R squared (OOB): -0.07717744
相关用法
- R parsnip max_mtry_formula 根据公式确定 mtry 的最大值。此函数可能会根据公式和数据集限制 mtry 的值。对于生存和/或多变量模型来说,这是一种安全的方法。
- R parsnip mlp 单层神经网络
- R parsnip mars 多元自适应回归样条 (MARS)
- R parsnip multinom_reg 多项式回归
- R parsnip logistic_reg 逻辑回归
- R parsnip predict.model_fit 模型预测
- R parsnip linear_reg 线性回归
- R parsnip C5_rules C5.0 基于规则的分类模型
- R parsnip set_engine 声明计算引擎和特定参数
- R parsnip condense_control 将控制对象压缩为更小的控制对象
- R parsnip control_parsnip 控制拟合函数
- R parsnip augment 通过预测增强数据
- R parsnip repair_call 修复模型调用对象
- R parsnip dot-model_param_name_key 翻译模型调整参数的名称
- R parsnip glm_grouped 将数据集中的分组二项式结果与个案权重拟合
- R parsnip rule_fit 规则拟合模型
- R parsnip svm_rbf 径向基函数支持向量机
- R parsnip set_args 更改模型规范的元素
- R parsnip translate 解决计算引擎的模型规范
- R parsnip svm_linear 线性支持向量机
- R parsnip set_new_model 注册模型的工具
- R parsnip rand_forest 随机森林
- R parsnip nearest_neighbor K-最近邻
- R parsnip parsnip_update 更新型号规格
- R parsnip fit 将模型规范拟合到数据集
注:本文由纯净天空筛选整理自Max Kuhn等大神的英文原创作品 Execution-time data dimension checks。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。