TensorFlow是Google设计的开源Python库,用于开发机器学习模型和深度学习神经网络。
concat()用于沿一维连接张量。
用法:tensorflow.concat( values, axis, name )
参数:
- values:它是张量或张量列表。
- axis:它是0-D张量,表示要连接的尺寸。
- name(optional):它定义了操作的名称。
返回值:它返回串联的张量。
范例1:
Python3
# Importing the library
import tensorflow as tf
# Initializing the input tensor
t1 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
# Printing the input tensor
print('t1:', t1)
print('t2:', t2)
# Calculating result
res = tf.concat([t1, t2], 2)
# Printing the result
print('Result:', res)
输出:
t1: [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] t2: [[[7, 4], [8, 4]], [[2, 10], [15, 11]]] Result: tf.Tensor( [[[ 1 2 7 4] [ 3 4 8 4]] [[ 5 6 2 10] [ 7 8 15 11]]], shape=(2, 2, 4), dtype=int32)
范例2:
Python3
# Importing the library
import tensorflow as tf
# Initializing the input tensor
t1 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
# Printing the input tensor
print('t1:', t1)
print('t2:', t2)
# Calculating result
res = tf.concat([t1, t2], 1)
# Printing the result
print('Result:', res)
输出:
t1: [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] t2: [[[7, 4], [8, 4]], [[2, 10], [15, 11]]] Result: tf.Tensor( [[[ 1 2] [ 3 4] [ 7 4] [ 8 4]] [[ 5 6] [ 7 8] [ 2 10] [15 11]]], shape=(2, 4, 2), dtype=int32)
相关用法
注:本文由纯净天空筛选整理自aman neekhara大神的英文原创作品 Python – tensorflow.concat()。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。