numpy.poly1d(arr,root,var):此函数有助于定义多项式函数。这使得将“natural operations”应用于多项式变得容易。
参数:
-> arr : [array_like] The polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then array values are the roots of the polynomial equation.
For example- poly1d(3, 2, 6) = 3x2 + 2x + 6
poly1d([1, 2, 3], True) = (x-1)(x-2)(x-3) = x3 - 6x2 + 11x -6-> root: [bool, optional] True means polynomial roots. Default is False.
-> var : variable like x, y, z that we need in polynomial [default is x].
Arguments:
c : Polynomial coefficient.
coef : Polynomial coefficient.
coefficients: Polynomial coefficient.
order : Order or degree of polynomial.
o : Order or degree of polynomial.
r : Polynomial root.
roots : Polynomial root.返回: Polynomial and the operation applied
代码1:解释poly1d()及其参数
# Python code explaining
# numpy.poly1d()
# importing libraries
import numpy as np
# Constructing polynomial
p1 = np.poly1d([1, 2])
p2 = np.poly1d([4, 9, 5, 4])
print ("P1:", p1)
print ("\n p2:\n", p2)
# Solve for x = 2
print ("\n\np1 at x = 2:", p1(2))
print ("p2 at x = 2:", p2(2))
# Finding Roots
print ("\n\nRoots of P1:", p1.r)
print ("Roots of P2:", p2.r)
# Finding Coefficients
print ("\n\nCoefficients of P1:", p1.c)
print ("Coefficients of P2:", p2.coeffs)
# Finding Order
print ("\n\nOrder / Degree of P1:", p1.o)
print ("Order / Degree of P2:", p2.order)
输出:
P1: 1 x + 2 p2: 3 2 4 x + 9 x + 5 x + 4 p1 at x = 2: 4 p2 at x = 2: 82 Roots of P1: [-2.] Roots of P2: [-1.86738371+0.j -0.19130814+0.70633545j -0.19130814-0.70633545j] Coefficients of P1: [1 2] Coefficients of P2: [4 9 5 4] Order / Degree of P1: 1 Order / Degree of P2: 3
代码2:多项式的基本数学运算
# Python code explaining
# numpy.poly1d()
# importing libraries
import numpy as np
# Constructing polynomial
p1 = np.poly1d([1, 2])
p2 = np.poly1d([4, 9, 5, 4])
print ("P1:", p1)
print ("\n p2:\n", p2)
print ("\n\np1 ^ 2:\n", p1**2)
print ("p2 ^ 2:\n", np.square(p2))
p3 = np.poly1d([1, 2], variable = 'y')
print ("\n\np3:", p3)
print ("\n\np1 * p2:\n", p1 * p2)
print ("\nMultiplying two polynimials:\n",
np.poly1d([1, -1]) * np.poly1d([1, -2]))
输出:
P1: 1 x + 2 p2: 3 2 4 x + 9 x + 5 x + 4 p1 ^ 2: 2 1 x + 4 x + 4 p2 ^ 2: [16 81 25 16] p3: 1 y + 2 p1 * p2: 4 3 2 4 x + 17 x + 23 x + 14 x + 8 Multiplying two polynimials: 2 1 x - 3 x + 2
相关用法
注:本文由纯净天空筛选整理自Mohit Gupta_OMG 大神的英文原创作品 numpy.poly1d() in Python。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。