numpy.full_like(a,fill_value,dtype = None,order ='K',subok = True):返回形状和类型与给定数组相同的新数组。
参数:
shape : Number of rows order : C_contiguous or F_contiguous dtype : [optional, float(by Default )] Data type of returned array. subok : [bool, optional] to make subclass of a or not
返回值:
ndarray
# Python Programming illustrating
# numpy.full_like method
import numpy as geek
x = geek.arange(10, dtype = int).reshape(2, 5)
print("x before full_like : \n", x)
# using full_like
print("\nx after full_like : \n", geek.full_like(x, 10.0))
y = geek.arange(10, dtype = float).reshape(2, 5)
print("\n\ny before full_like : \n", x)
# using full_like
print("\ny after full_like : \n", geek.full_like(y, 0.01))
输出:
x before full_like : [[0 1 2 3 4] [5 6 7 8 9]] x after full_like : [[10 10 10 10 10] [10 10 10 10 10]] y before full_like : [[0 1 2 3 4] [5 6 7 8 9]] y after full_like : [[ 0.01 0.01 0.01 0.01 0.01] [ 0.01 0.01 0.01 0.01 0.01]]
相关用法
注:本文由纯净天空筛选整理自 numpy.full_like() in Python。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。