Pandas Dataframe 提供了更改列值数据类型的自由。我们可以将它们从 Integers 更改为 Float 类型,将 Integer 更改为 Datetime,String 更改为 Integer,Float 更改为 Datetime 等。为了将 float 转换为 DateTime,我们使用 pandas.to_datetime() 函数并使用以下语法:
Syntax:pandas.to_datetime(arg, errors=’raise’, dayfirst=False, yearfirst=False, utc=None, box=True, format=None, exact=True, unit=None, infer_datetime_format=False, origin=’unix’, cache=False)
范例1:使用 pandas.to_datetime() 将一列从 float 转换为 ‘yyyymmdd’ 格式
Python3
# importing pandas library
import pandas as pd
# Initializing the nested list
# with Data set
player_list = [[20200112.0,'Mathematics'],
[20200114.0,'English'],
[20200116.0,'Physics'],
[20200119.0,'Chemistry'],
[20200121.0,'French'],
[20200124.0,'Biology'],
[20200129.0,'Sanskrit']]
# creating a pandas dataframe
df = pd.DataFrame(player_list,columns=['Dates','Test'])
# printing dataframe
print(df)
print()
# checking the type
print(df.dtypes)
输出:
更改数据类型后。
Python3
# converting the float to datetime format
df['Dates'] = pd.to_datetime(df['Dates'], format='%Y%m%d')
# printing dataframe
print(df)
print()
print(df.dtypes)
输出:
在上面的示例中,我们将“Dates”列的数据类型从“float64”更改为“datetime64[ns]”类型。
范例2:如果 DataFrame 列是 yymmdd 格式,我们必须将其转换为 yyyymmdd 格式
Python3
# importing pandas library
import pandas as pd
# Initializing the nested list with
# Data set
player_list = [[180112.0,'Mathematics'],
[180114.0,'English'],
[180116.0,'Physics'],
[180119.0,'Chemistry'],
[180121.0,'French'],
[180124.0,'Biology'],
[180129.0,'Sanskrit']]
# creating a pandas dataframe
df = pd.DataFrame(player_list,columns=['Dates','Test'])
# printing dataframe
print(df)
print()
# checking the type
print(df.dtypes)
输出:
更改数据类型后。
Python3
# converting the float to datetime format
df['Dates'] = pd.to_datetime(df['Dates'], format='%y%m%d')
# printing dataframe
print(df)
print()
print(df.dtypes)
输出:
在上面的示例中,我们将“日期”列的数据类型从“float64”更改为“datetime64[ns]”,并将格式从“yymmdd”更改为“yyyymmdd”。
范例3:当我们必须将浮点列转换为日期和时间格式时
Python3
# importing pandas library
import pandas as pd
# Initializing the nested list with Data set
player_list = [[20200112082520.0,'Mathematics'],
[20200114085020.0,'English'],
[20200116093529.0,'Physics'],
[20200119101530.0,'Chemistry'],
[20200121104060.0,'French'],
[20200124113541.0,'Biology'],
[20200129125023.0,'Sanskrit']]
# creating a pandas dataframe
df = pd.DataFrame(player_list,columns=['Dates','Test'])
# printing dataframe
print(df)
print()
# checking the type
print(df.dtypes)
输出:
更改数据类型后。
Python3
# converting the float to datetime format
df['Dates'] = pd.to_datetime(df['Dates'], format='%Y%m%d%H%M%S')
# printing dataframe
print(df)
print()
print(df.dtypes)
输出:
在上面的示例中,我们将“Dates”列的数据类型从“float64”更改为“datetime64[ns]”,并将格式更改为日期和时间
范例4:使用 pandas.to_datetime() 将多列从 float 转换为“yyyymmdd”格式
Python3
# importing pandas library
import pandas as pd
# Initializing the nested list with Data set
player_list = [[20200112.0,'Mathematics',20200113.0],
[20200114.0,'English',20200115.0],
[20200116.0,'Physics',20200117.0],
[20200119.0,'Chemistry',20200120.0],
[20200121.0,'French',20200122.0],
[20200124.0,'Biology',20200125.0],
[20200129.0,'Sanskrit',20200130.0]]
# creating a pandas dataframe
df = pd.DataFrame(player_list,columns=['Starting_Date','Test','Ending_Date'])
# printing dataframe
print(df)
print()
# checking the type
print(df.dtypes)
输出:
更改数据类型后。
Python3
# converting the float to datetime format
# in multiple columns
df['Starting_Date'] = pd.to_datetime(df['Starting_Date'],
format='%Y%m%d')
df['Ending_Date'] = pd.to_datetime(df['Ending_Date'],
format='%Y%m%d')
# printing dataframe
print(df)
print()
print(df.dtypes)
输出:
在上面的示例中,我们将“Starting_Date”和“Ending_Date”列的数据类型从“float64”更改为“datetime64[ns]”类型。
相关用法
- Pandas DataFrame Integer转Datetime用法及代码示例
- Python Pandas DataFrame.fillna()用法及代码示例
- Pandas DataFrame Index转Column用法及代码示例
- Pandas DataFrame String转Integer用法及代码示例
注:本文由纯净天空筛选整理自vanshgaur14866大神的英文原创作品 How to Convert Float to Datetime in Pandas DataFrame?。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。