当前位置: 首页>>代码示例>>TypeScript>>正文


TypeScript Graph.meanSquaredCost方法代码示例

本文整理汇总了TypeScript中deeplearn.Graph.meanSquaredCost方法的典型用法代码示例。如果您正苦于以下问题:TypeScript Graph.meanSquaredCost方法的具体用法?TypeScript Graph.meanSquaredCost怎么用?TypeScript Graph.meanSquaredCost使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在deeplearn.Graph的用法示例。


在下文中一共展示了Graph.meanSquaredCost方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的TypeScript代码示例。

示例1: intro

// This file parallels (some of) the code in the introduction tutorial.

/**
 * 'Math with WebGL backend' section of tutorial
 */
async function intro() {
  const a = dl.tensor2d([1.0, 2.0, 3.0, 4.0], [2, 2]);
  const b = dl.tensor2d([0.0, 2.0, 4.0, 6.0], [2, 2]);

  const size = dl.scalar(a.size);

  // Non-blocking math calls.
  const average = a.sub(b).square().sum().div(size);

  console.log(`mean squared difference: ${await average.val()}`);

  /**
   * 'Graphs and Tensors' section of tutorial
   */

  const g = new dl.Graph();

  // Placeholders are input containers. This is the container for where we
  // will feed an input Tensor when we execute the graph.
  const inputShape = [3];
  const inputTensor = g.placeholder('input', inputShape);

  const labelShape = [1];
  const labelTensor = g.placeholder('label', labelShape);

  // Variables are containers that hold a value that can be updated from
  // training.
  // Here we initialize the multiplier variable randomly.
  const multiplier = g.variable('multiplier', dl.randomNormal([1, 3]));

  // Top level graph methods take Tensors and return Tensors.
  const outputTensor = g.matmul(multiplier, inputTensor);
  const costTensor = g.meanSquaredCost(labelTensor, outputTensor);

  // Tensors, like Tensors, have a shape attribute.
  console.log(outputTensor.shape);

  /**
   * 'dl.Session and dl.FeedEntry' section of the tutorial.
   */

  const learningRate = .00001;
  const batchSize = 3;

  const session = new dl.Session(g, dl.ENV.math);
  const optimizer = dl.train.sgd(learningRate);

  const inputs: dl.Tensor1D[] = [
    dl.tensor1d([1.0, 2.0, 3.0]), dl.tensor1d([10.0, 20.0, 30.0]),
    dl.tensor1d([100.0, 200.0, 300.0])
  ];

  const labels: dl.Tensor1D[] =
      [dl.tensor1d([4.0]), dl.tensor1d([40.0]), dl.tensor1d([400.0])];

  // Shuffles inputs and labels and keeps them mutually in sync.
  const shuffledInputProviderBuilder =
      new dl.InCPUMemoryShuffledInputProviderBuilder([inputs, labels]);
  const [inputProvider, labelProvider] =
      shuffledInputProviderBuilder.getInputProviders();

  // Maps tensors to InputProviders.
  const feedEntries: dl.FeedEntry[] = [
    {tensor: inputTensor, data: inputProvider},
    {tensor: labelTensor, data: labelProvider}
  ];

  const NUM_BATCHES = 10;
  for (let i = 0; i < NUM_BATCHES; i++) {
    // Wrap session.train in a scope so the cost gets cleaned up
    // automatically.
    await dl.tidy(async () => {
      // Train takes a cost tensor to minimize. Trains one batch. Returns the
      // average cost as a dl.Scalar.
      const cost = session.train(
          costTensor, feedEntries, batchSize, optimizer, dl.CostReduction.MEAN);

      console.log(`last average cost (${i}): ${await cost.val()}`);
    });
  }

  const testInput = dl.tensor1d([0.1, 0.2, 0.3]);

  // session.eval can take Tensors as input data.
  const testFeedEntries: dl.FeedEntry[] =
      [{tensor: inputTensor, data: testInput}];

  const testOutput = session.eval(outputTensor, testFeedEntries);

  console.log('---inference output---');
  console.log(`shape: ${testOutput.shape}`);
  console.log(`value: ${await testOutput.val(0)}`);
}
开发者ID:ScapeQin,项目名称:deeplearnjs,代码行数:98,代码来源:intro.ts

示例2: mlBeginners

async function mlBeginners() {
  const math = dl.ENV.math;

  // This file parallels (some of) the code in the ML Beginners tutorial.
  {
    const matrixShape: [number, number] = [2, 3];  // 2 rows, 3 columns.
    const matrix = dl.tensor2d([10, 20, 30, 40, 50, 60], matrixShape);
    const vector = dl.tensor1d([0, 1, 2]);
    const result = dl.matrixTimesVector(matrix, vector);

    console.log('result shape:', result.shape);
    console.log('result', await result.data());
  }

  {
    const g = new dl.Graph();
    // Make a new input in the dl.Graph, called 'x', with shape [] (a
    // dl.Scalar).
    const x = g.placeholder('x', []);
    // Make new variables in the dl.Graph, 'a', 'b', 'c' with shape [] and
    // random initial values.
    const a = g.variable('a', dl.scalar(Math.random()));
    const b = g.variable('b', dl.scalar(Math.random()));
    const c = g.variable('c', dl.scalar(Math.random()));
    // Make new tensors representing the output of the operations of the
    // quadratic.
    const order2 = g.multiply(a, g.square(x));
    const order1 = g.multiply(b, x);
    const y = g.add(g.add(order2, order1), c);

    // When training, we need to provide a label and a cost function.
    const yLabel = g.placeholder('y label', []);
    // Provide a mean squared cost function for training. cost = (y - yLabel)^2
    const cost = g.meanSquaredCost(y, yLabel);

    // At this point the dl.Graph is set up, but has not yet been evaluated.
    // **deeplearn.js** needs a dl.Session object to evaluate a dl.Graph.
    const session = new dl.Session(g, math);

    await dl.tidy(async () => {
      /**
       * Inference
       */
      // Now we ask the dl.Graph to evaluate (infer) and give us the result when
      // providing a value 4 for "x".
      // NOTE: "a", "b", and "c" are randomly initialized, so this will give us
      // something random.
      let result = session.eval(y, [{tensor: x, data: dl.scalar(4)}]);
      console.log(await result.data());

      /**
       * Training
       */
      // Now let's learn the coefficients of this quadratic given some data.
      // To do this, we need to provide examples of x and y.
      // The values given here are for values a = 3, b = 2, c = 1, with random
      // noise added to the output so it's not a perfect fit.
      const xs = [dl.scalar(0), dl.scalar(1), dl.scalar(2), dl.scalar(3)];
      const ys =
          [dl.scalar(1.1), dl.scalar(5.9), dl.scalar(16.8), dl.scalar(33.9)];
      // When training, it's important to shuffle your data!
      const shuffledInputProviderBuilder =
          new dl.InCPUMemoryShuffledInputProviderBuilder([xs, ys]);
      const [xProvider, yProvider] =
          shuffledInputProviderBuilder.getInputProviders();

      // Training is broken up into batches.
      const NUM_BATCHES = 20;
      const BATCH_SIZE = xs.length;
      // Before we start training, we need to provide an optimizer. This is the
      // object that is responsible for updating weights. The learning rate
      // param is a value that represents how large of a step to make when
      // updating weights. If this is too big, you may overstep and oscillate.
      // If it is too small, the model may take a long time to train.
      const LEARNING_RATE = .01;
      const optimizer = dl.train.sgd(LEARNING_RATE);
      for (let i = 0; i < NUM_BATCHES; i++) {
        // Train takes a cost dl.Tensor to minimize; this call trains one batch
        // and returns the average cost of the batch as a dl.Scalar.
        const costValue = session.train(
            cost,
            // Map input providers to Tensors on the dl.Graph.
            [{tensor: x, data: xProvider}, {tensor: yLabel, data: yProvider}],
            BATCH_SIZE, optimizer, dl.CostReduction.MEAN);

        console.log(`average cost: ${await costValue.data()}`);
      }

      // Now print the value from the trained model for x = 4, should be ~57.0.
      result = session.eval(y, [{tensor: x, data: dl.scalar(4)}]);
      console.log('result should be ~57.0:');
      console.log(await result.data());
    });
  }
}
开发者ID:ScapeQin,项目名称:deeplearnjs,代码行数:95,代码来源:ml_beginners.ts


注:本文中的deeplearn.Graph.meanSquaredCost方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。