本文整理汇总了TypeScript中deeplearn.scalar函数的典型用法代码示例。如果您正苦于以下问题:TypeScript scalar函数的具体用法?TypeScript scalar怎么用?TypeScript scalar使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了scalar函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的TypeScript代码示例。
示例1: onePlusOne
async function onePlusOne() {
const a = dl.scalar(1);
const b = dl.scalar(1);
const result = await a.add(b).data();
document.getElementById('output').innerText = result.toString();
}
示例2:
await dl.tidy(async () => {
/**
* Inference
*/
// Now we ask the dl.Graph to evaluate (infer) and give us the result when
// providing a value 4 for "x".
// NOTE: "a", "b", and "c" are randomly initialized, so this will give us
// something random.
let result = session.eval(y, [{tensor: x, data: dl.scalar(4)}]);
console.log(await result.data());
/**
* Training
*/
// Now let's learn the coefficients of this quadratic given some data.
// To do this, we need to provide examples of x and y.
// The values given here are for values a = 3, b = 2, c = 1, with random
// noise added to the output so it's not a perfect fit.
const xs = [dl.scalar(0), dl.scalar(1), dl.scalar(2), dl.scalar(3)];
const ys =
[dl.scalar(1.1), dl.scalar(5.9), dl.scalar(16.8), dl.scalar(33.9)];
// When training, it's important to shuffle your data!
const shuffledInputProviderBuilder =
new dl.InCPUMemoryShuffledInputProviderBuilder([xs, ys]);
const [xProvider, yProvider] =
shuffledInputProviderBuilder.getInputProviders();
// Training is broken up into batches.
const NUM_BATCHES = 20;
const BATCH_SIZE = xs.length;
// Before we start training, we need to provide an optimizer. This is the
// object that is responsible for updating weights. The learning rate
// param is a value that represents how large of a step to make when
// updating weights. If this is too big, you may overstep and oscillate.
// If it is too small, the model may take a long time to train.
const LEARNING_RATE = .01;
const optimizer = dl.train.sgd(LEARNING_RATE);
for (let i = 0; i < NUM_BATCHES; i++) {
// Train takes a cost dl.Tensor to minimize; this call trains one batch
// and returns the average cost of the batch as a dl.Scalar.
const costValue = session.train(
cost,
// Map input providers to Tensors on the dl.Graph.
[{tensor: x, data: xProvider}, {tensor: yLabel, data: yProvider}],
BATCH_SIZE, optimizer, dl.CostReduction.MEAN);
console.log(`average cost: ${await costValue.data()}`);
}
// Now print the value from the trained model for x = 4, should be ~57.0.
result = session.eval(y, [{tensor: x, data: dl.scalar(4)}]);
console.log('result should be ~57.0:');
console.log(await result.data());
});
示例3:
await dl.tidy(async () => {
const forgetBias = dl.scalar(1.0);
const lstm1 = (data: dl.Tensor2D, c: dl.Tensor2D, h: dl.Tensor2D) =>
dl.basicLSTMCell(forgetBias, lstmKernel1, lstmBias1, data, c, h);
const lstm2 = (data: dl.Tensor2D, c: dl.Tensor2D, h: dl.Tensor2D) =>
dl.basicLSTMCell(forgetBias, lstmKernel2, lstmBias2, data, c, h);
let c: dl.Tensor2D[] = [
dl.zeros([1, lstmBias1.shape[0] / 4]),
dl.zeros([1, lstmBias2.shape[0] / 4])
];
let h: dl.Tensor2D[] = [
dl.zeros([1, lstmBias1.shape[0] / 4]),
dl.zeros([1, lstmBias2.shape[0] / 4])
];
let input = primerData;
for (let i = 0; i < expected.length; i++) {
const onehot = dl.oneHot(dl.tensor1d([input]), 10);
const output = dl.multiRNNCell([lstm1, lstm2], onehot, c, h);
c = output[0];
h = output[1];
const outputH = h[1];
const logits =
outputH.matMul(fullyConnectedWeights).add(fullyConnectedBiases);
const result = await dl.argMax(logits).val();
results.push(result);
input = result;
}
});
示例4: getUnaryOp
function getUnaryOp(option: string) {
switch (option) {
case 'log':
return (x: dl.Tensor) => x.log();
case 'exp':
return (x: dl.Tensor) => x.exp();
case 'neg':
return (x: dl.Tensor) => x.neg();
case 'ceil':
return (x: dl.Tensor) => x.ceil();
case 'floor':
return (x: dl.Tensor) => x.floor();
case 'log1p':
return (x: dl.Tensor) => x.log1p();
case 'sqrt':
return (x: dl.Tensor) => x.sqrt();
case 'square':
return (x: dl.Tensor) => x.square();
case 'abs':
return (x: dl.Tensor) => x.abs();
case 'relu':
return (x: dl.Tensor) => x.relu();
case 'elu':
return (x: dl.Tensor) => x.elu();
case 'selu':
return (x: dl.Tensor) => x.selu();
case 'leakyRelu':
return (x: dl.Tensor) => x.leakyRelu();
case 'prelu':
// TODO: Configurable from UI
const alpha = dl.scalar(0.1);
return (x: dl.Tensor) => x.prelu(alpha);
case 'sigmoid':
return (x: dl.Tensor) => x.sigmoid();
case 'sin':
return (x: dl.Tensor) => x.sin();
case 'cos':
return (x: dl.Tensor) => x.cos();
case 'tan':
return (x: dl.Tensor) => x.tan();
case 'asin':
return (x: dl.Tensor) => x.asin();
case 'acos':
return (x: dl.Tensor) => x.acos();
case 'atan':
return (x: dl.Tensor) => x.atan();
case 'sinh':
return (x: dl.Tensor) => x.sinh();
case 'cosh':
return (x: dl.Tensor) => x.cosh();
case 'tanh':
return (x: dl.Tensor) => x.tanh();
case 'step':
return (x: dl.Tensor) => x.step();
default:
throw new Error(`Not found such ops: ${option}`);
}
}
示例5:
const img = dl.tidy(() => {
const conv1 = this.convLayer(preprocessedInput.toFloat(), 1, true, 0);
const conv2 = this.convLayer(conv1, 2, true, 3);
const conv3 = this.convLayer(conv2, 2, true, 6);
const resid1 = this.residualBlock(conv3, 9);
const resid2 = this.residualBlock(resid1, 15);
const resid3 = this.residualBlock(resid2, 21);
const resid4 = this.residualBlock(resid3, 27);
const resid5 = this.residualBlock(resid4, 33);
const convT1 = this.convTransposeLayer(resid5, 64, 2, 39);
const convT2 = this.convTransposeLayer(convT1, 32, 2, 42);
const convT3 = this.convLayer(convT2, 1, false, 45);
return convT3.tanh()
.mul(this.timesScalar)
.add(this.plusScalar)
.clip(0, 255)
.div(dl.scalar(255)) as dl.Tensor3D;
});
示例6: resetRnn
function resetRnn() {
c = [
dl.zeros([1, lstmBias1.shape[0] / 4]),
dl.zeros([1, lstmBias2.shape[0] / 4]),
dl.zeros([1, lstmBias3.shape[0] / 4]),
];
h = [
dl.zeros([1, lstmBias1.shape[0] / 4]),
dl.zeros([1, lstmBias2.shape[0] / 4]),
dl.zeros([1, lstmBias3.shape[0] / 4]),
];
if (lastSample != null) {
lastSample.dispose();
}
lastSample = dl.scalar(PRIMER_IDX);
currentPianoTimeSec = piano.now();
pianoStartTimestampMs = performance.now() - currentPianoTimeSec * 1000;
currentLoopId++;
generateStep(currentLoopId);
}
示例7: intro
// This file parallels (some of) the code in the introduction tutorial.
/**
* 'Math with WebGL backend' section of tutorial
*/
async function intro() {
const a = dl.tensor2d([1.0, 2.0, 3.0, 4.0], [2, 2]);
const b = dl.tensor2d([0.0, 2.0, 4.0, 6.0], [2, 2]);
const size = dl.scalar(a.size);
// Non-blocking math calls.
const average = a.sub(b).square().sum().div(size);
console.log(`mean squared difference: ${await average.val()}`);
/**
* 'Graphs and Tensors' section of tutorial
*/
const g = new dl.Graph();
// Placeholders are input containers. This is the container for where we
// will feed an input Tensor when we execute the graph.
const inputShape = [3];
const inputTensor = g.placeholder('input', inputShape);
const labelShape = [1];
const labelTensor = g.placeholder('label', labelShape);
// Variables are containers that hold a value that can be updated from
// training.
// Here we initialize the multiplier variable randomly.
const multiplier = g.variable('multiplier', dl.randomNormal([1, 3]));
// Top level graph methods take Tensors and return Tensors.
const outputTensor = g.matmul(multiplier, inputTensor);
const costTensor = g.meanSquaredCost(labelTensor, outputTensor);
// Tensors, like Tensors, have a shape attribute.
console.log(outputTensor.shape);
/**
* 'dl.Session and dl.FeedEntry' section of the tutorial.
*/
const learningRate = .00001;
const batchSize = 3;
const session = new dl.Session(g, dl.ENV.math);
const optimizer = dl.train.sgd(learningRate);
const inputs: dl.Tensor1D[] = [
dl.tensor1d([1.0, 2.0, 3.0]), dl.tensor1d([10.0, 20.0, 30.0]),
dl.tensor1d([100.0, 200.0, 300.0])
];
const labels: dl.Tensor1D[] =
[dl.tensor1d([4.0]), dl.tensor1d([40.0]), dl.tensor1d([400.0])];
// Shuffles inputs and labels and keeps them mutually in sync.
const shuffledInputProviderBuilder =
new dl.InCPUMemoryShuffledInputProviderBuilder([inputs, labels]);
const [inputProvider, labelProvider] =
shuffledInputProviderBuilder.getInputProviders();
// Maps tensors to InputProviders.
const feedEntries: dl.FeedEntry[] = [
{tensor: inputTensor, data: inputProvider},
{tensor: labelTensor, data: labelProvider}
];
const NUM_BATCHES = 10;
for (let i = 0; i < NUM_BATCHES; i++) {
// Wrap session.train in a scope so the cost gets cleaned up
// automatically.
await dl.tidy(async () => {
// Train takes a cost tensor to minimize. Trains one batch. Returns the
// average cost as a dl.Scalar.
const cost = session.train(
costTensor, feedEntries, batchSize, optimizer, dl.CostReduction.MEAN);
console.log(`last average cost (${i}): ${await cost.val()}`);
});
}
const testInput = dl.tensor1d([0.1, 0.2, 0.3]);
// session.eval can take Tensors as input data.
const testFeedEntries: dl.FeedEntry[] =
[{tensor: inputTensor, data: testInput}];
const testOutput = session.eval(outputTensor, testFeedEntries);
console.log('---inference output---');
console.log(`shape: ${testOutput.shape}`);
console.log(`value: ${await testOutput.val(0)}`);
}
示例8: require
import {KeyboardElement} from './keyboard_element';
// tslint:disable-next-line:no-require-imports
const Piano = require('tone-piano').Piano;
let lstmKernel1: dl.Tensor2D;
let lstmBias1: dl.Tensor1D;
let lstmKernel2: dl.Tensor2D;
let lstmBias2: dl.Tensor1D;
let lstmKernel3: dl.Tensor2D;
let lstmBias3: dl.Tensor1D;
let c: dl.Tensor2D[];
let h: dl.Tensor2D[];
let fcB: dl.Tensor1D;
let fcW: dl.Tensor2D;
const forgetBias = dl.scalar(1.0);
const activeNotes = new Map<number, number>();
// How many steps to generate per generateStep call.
// Generating more steps makes it less likely that we'll lag behind in note
// generation. Generating fewer steps makes it less likely that the browser UI
// thread will be starved for cycles.
const STEPS_PER_GENERATE_CALL = 10;
// How much time to try to generate ahead. More time means fewer buffer
// underruns, but also makes the lag from UI change to output larger.
const GENERATION_BUFFER_SECONDS = .5;
// If we're this far behind, reset currentTime time to piano.now().
const MAX_GENERATION_LAG_SECONDS = 1;
// If a note is held longer than this, release it.
const MAX_NOTE_DURATION_SECONDS = 3;
示例9: constructor
constructor(private style: string) {
this.variableDictionary = {};
this.timesScalar = dl.scalar(150);
this.plusScalar = dl.scalar(255. / 2);
this.epsilonScalar = dl.scalar(1e-3);
}
示例10: mlBeginners
async function mlBeginners() {
const math = dl.ENV.math;
// This file parallels (some of) the code in the ML Beginners tutorial.
{
const matrixShape: [number, number] = [2, 3]; // 2 rows, 3 columns.
const matrix = dl.tensor2d([10, 20, 30, 40, 50, 60], matrixShape);
const vector = dl.tensor1d([0, 1, 2]);
const result = dl.matrixTimesVector(matrix, vector);
console.log('result shape:', result.shape);
console.log('result', await result.data());
}
{
const g = new dl.Graph();
// Make a new input in the dl.Graph, called 'x', with shape [] (a
// dl.Scalar).
const x = g.placeholder('x', []);
// Make new variables in the dl.Graph, 'a', 'b', 'c' with shape [] and
// random initial values.
const a = g.variable('a', dl.scalar(Math.random()));
const b = g.variable('b', dl.scalar(Math.random()));
const c = g.variable('c', dl.scalar(Math.random()));
// Make new tensors representing the output of the operations of the
// quadratic.
const order2 = g.multiply(a, g.square(x));
const order1 = g.multiply(b, x);
const y = g.add(g.add(order2, order1), c);
// When training, we need to provide a label and a cost function.
const yLabel = g.placeholder('y label', []);
// Provide a mean squared cost function for training. cost = (y - yLabel)^2
const cost = g.meanSquaredCost(y, yLabel);
// At this point the dl.Graph is set up, but has not yet been evaluated.
// **deeplearn.js** needs a dl.Session object to evaluate a dl.Graph.
const session = new dl.Session(g, math);
await dl.tidy(async () => {
/**
* Inference
*/
// Now we ask the dl.Graph to evaluate (infer) and give us the result when
// providing a value 4 for "x".
// NOTE: "a", "b", and "c" are randomly initialized, so this will give us
// something random.
let result = session.eval(y, [{tensor: x, data: dl.scalar(4)}]);
console.log(await result.data());
/**
* Training
*/
// Now let's learn the coefficients of this quadratic given some data.
// To do this, we need to provide examples of x and y.
// The values given here are for values a = 3, b = 2, c = 1, with random
// noise added to the output so it's not a perfect fit.
const xs = [dl.scalar(0), dl.scalar(1), dl.scalar(2), dl.scalar(3)];
const ys =
[dl.scalar(1.1), dl.scalar(5.9), dl.scalar(16.8), dl.scalar(33.9)];
// When training, it's important to shuffle your data!
const shuffledInputProviderBuilder =
new dl.InCPUMemoryShuffledInputProviderBuilder([xs, ys]);
const [xProvider, yProvider] =
shuffledInputProviderBuilder.getInputProviders();
// Training is broken up into batches.
const NUM_BATCHES = 20;
const BATCH_SIZE = xs.length;
// Before we start training, we need to provide an optimizer. This is the
// object that is responsible for updating weights. The learning rate
// param is a value that represents how large of a step to make when
// updating weights. If this is too big, you may overstep and oscillate.
// If it is too small, the model may take a long time to train.
const LEARNING_RATE = .01;
const optimizer = dl.train.sgd(LEARNING_RATE);
for (let i = 0; i < NUM_BATCHES; i++) {
// Train takes a cost dl.Tensor to minimize; this call trains one batch
// and returns the average cost of the batch as a dl.Scalar.
const costValue = session.train(
cost,
// Map input providers to Tensors on the dl.Graph.
[{tensor: x, data: xProvider}, {tensor: yLabel, data: yProvider}],
BATCH_SIZE, optimizer, dl.CostReduction.MEAN);
console.log(`average cost: ${await costValue.data()}`);
}
// Now print the value from the trained model for x = 4, should be ~57.0.
result = session.eval(y, [{tensor: x, data: dl.scalar(4)}]);
console.log('result should be ~57.0:');
console.log(await result.data());
});
}
}