本文整理汇总了Scala中scala.collection.mutable.MutableList类的典型用法代码示例。如果您正苦于以下问题:Scala MutableList类的具体用法?Scala MutableList怎么用?Scala MutableList使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了MutableList类的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: Game
//设置package包名称以及导入依赖的类
package pl.writeonly.babel.beans
import pl.writeonly.babel.entities.User
import pl.writeonly.babel.entities.Record
import pl.writeonly.babel.entities.Word
import scala.collection.mutable.MutableList
import scala.collection.mutable.HashMap
//@org.springframework.stereotype.Component
class Game(val drawn: Array[Record]) {
val priv = drawn(0)
val key = priv.relation.key
val map= new HashMap[Word, Record] //tra zgadn?? co tam da?
val lambda = (ml: MutableList[Word], r: Record) => {
val word = r.relation.value
this.map + (word -> r)
ml += word
}
val values = drawn.foldLeft(new MutableList[Word])(lambda).toArray
val tuple = key -> values
}
示例2: RecordBean
//设置package包名称以及导入依赖的类
package pl.writeonly.babel.beans
import javax.annotation.Resource
import java.io.BufferedReader
import org.springframework.stereotype.Service
import pl.writeonly.babel.daos.DaoCrud
import pl.writeonly.babel.entities.Record
import pl.writeonly.babel.entities.User
import pl.writeonly.scala.util.ToBoolean
import scala.collection.mutable.MutableList
import pl.writeonly.babel.entities.Relation
@org.springframework.stereotype.Service
class RecordBean(@Resource(name = "daoImpl") val dao: DaoCrud) extends ToBoolean {
val clazz = classOf[Record]
def persist(record: Record) = dao.persist(record)
def persistAll(records: List[Record]) = dao.persistAll(records)
def find(user: User) = dao.find(clazz);
def find() = dao.find(clazz)
def merge(record: Record) = dao.merge(record);
def parse(reader: BufferedReader): MutableList[Record] = {
val list = new MutableList[Record]
do {
val line: String = reader.readLine
if (!line) return list
list += new Record(line)
var i: Int = new Integer(line).toInt
} while (true)
return null
}
def toRecordAll(relations : List[Relation]) = {
}
}
示例3: Assignment2RDD
//设置package包名称以及导入依赖的类
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import scala.collection.mutable.MutableList
object Assignment2RDD {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("Assignment 2").setMaster("local[*]")
val sc = new SparkContext(conf)
val filePath = "Path\\to\\textfiles\\*.txt"
val file = sc.textFile(filePath)
val ftm = file.map(x => x.split(","))
val ftm1 = ftm.map(x => (x(0).toInt,x(1).toInt,x(2).trim))
var y0 = MutableList(0)
var y1 = MutableList(0)
var y2 = MutableList(0)
var y3 = MutableList(0)
var y4 = MutableList(0)
val grouped_data = ftm1.groupBy(_._1).collect()
val grouped_data0 = List(grouped_data).foreach(x => x(0)._2.foreach(x => y0+=x._2))
val grouped_data1 = List(grouped_data).foreach(x => x(1)._2.foreach(x => y1+=x._2))
val grouped_data2 = List(grouped_data).foreach(x => x(2)._2.foreach(x => y2+=x._2))
val grouped_data3 = List(grouped_data).foreach(x => x(3)._2.foreach(x => y3+=x._2))
val grouped_data4 = List(grouped_data).foreach(x => x(4)._2.foreach(x => y4+=x._2))
println("1001 ", y0.max)
println("1002 ", y1.max)
println("1003 ", y2.max)
println("1004 ", y3.max)
println("1005 ", y4.max)
}
}
示例4: ParallelCoordinates
//设置package包名称以及导入依赖的类
import org.jfree.chart._
import org.jfree.data.xy._
import scala.math._
import scala.collection.mutable.{MutableList, Map}
import java.io.{FileReader, BufferedReader}
object ParallelCoordinates {
def readCSVFile(filename: String): Map[String, MutableList[String]] = {
val file = new FileReader(filename)
val reader = new BufferedReader(file)
val csvdata: Map[String, MutableList[String]] = Map()
try {
val alldata = new MutableList[Array[String]]
var line:String = null
while ({line = reader.readLine(); line} != null) {
if (line.length != 0) {
val delimiter: String = ","
var splitline: Array[String] = line.split(delimiter).map(_.trim)
alldata += splitline
}
}
val labels = MutableList("sepal length", "sepal width",
"petal length", "petal width", "class")
val labelled = labels.zipWithIndex.map {
case (label, index) => label -> alldata.map(x => x(index))
}
for (pair <- labelled) {
csvdata += pair
}
} finally {
reader.close()
}
csvdata
}
def main(args: Array[String]) {
val data = readCSVFile("iris.csv")
val dataset = new DefaultXYDataset
for (i <- 0 until data("sepal length").size) {
val x = Array(0.0, 1.0, 2.0, 3.0)
val y1 = data("sepal length")(i).toDouble
val y2 = data("sepal width")(i).toDouble
val y3 = data("petal length")(i).toDouble
val y4 = data("petal width")(i).toDouble
val y = Array(y1, y2, y3, y4)
val cls = data("class")(i)
dataset.addSeries(cls + i, Array(x, y))
}
val frame = new ChartFrame("Parallel Coordinates",
ChartFactory.createXYLineChart("Parallel Coordinates", "x", "y",
dataset, org.jfree.chart.plot.PlotOrientation.VERTICAL,
false, false, false))
frame.pack()
frame.setVisible(true)
}
}
示例5: CSVReader
//设置package包名称以及导入依赖的类
import scala.collection.mutable.{MutableList, Map}
import java.io.{FileReader, BufferedReader}
object CSVReader {
def main(args: Array[String]) {
val file = new FileReader("iris.csv")
val reader = new BufferedReader(file)
try {
val alldata = new MutableList[Array[String]]
var line:String = null
while ({line = reader.readLine(); line} != null) {
if (line.length != 0) {
val delimiter: String = ","
var splitline: Array[String] = line.split(delimiter).map(_.trim)
alldata += splitline
}
}
val labels = MutableList("sepal length", "sepal width",
"petal length", "petal width", "class")
val labelled = labels.zipWithIndex.map {
case (label, index) => label -> alldata.map(x => x(index))
}
val csvdata: Map[String, MutableList[String]] = Map()
for (pair <- labelled) {
csvdata += pair
}
}
finally {
reader.close()
}
}
}