本文整理汇总了Scala中scala.collection.GenSeq类的典型用法代码示例。如果您正苦于以下问题:Scala GenSeq类的具体用法?Scala GenSeq怎么用?Scala GenSeq使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了GenSeq类的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: sumElements
//设置package包名称以及导入依赖的类
import scala.annotation.tailrec
import scala.collection.GenSeq
import scala.math.sqrt
package object PageRank {
type LinkMat = GenSeq[(Int,Int)]
def sumElements(R: GenSeq[Float], A: LinkMat, j: Int): Float = {
// sums all PageRanks / number of links for a column j
val totalLinks = A.filter(_._2==j)
if (totalLinks.isEmpty) sys.error("No link in the page " + j + " at sumElements")
else R(j)/totalLinks.size
}
// find all pages pointing to i A(i,j) exists
def findConnected(i: Int, A: LinkMat):GenSeq[Int] = A.filter(_._1==i).map(_._2).toSeq
def converged(r1: GenSeq[Float], r2: GenSeq[Float], eps: Float): Boolean = {
val totSquare: Float = r1.zip(r2).map(p=>(p._1-p._2)*(p._1-p._2)).sum
sqrt(totSquare/r1.size)<=eps
}
@tailrec def compRank(R: GenSeq[Float], A: LinkMat, damp: Float, eps: Float, niter: Int = 0,niterMax: Int = 10000): GenSeq[Float] = {
val rankIndex: GenSeq[Int] = 0 until R.size
val rightRank: GenSeq[Float] = rankIndex map{i:Int =>
val connected = findConnected(i,A)
connected.map{j:Int => sumElements(R, A, j)}.sum
}
val newRank = rightRank map {damp*_ + (1-damp)/R.size}
if(converged(newRank,R,eps)) newRank
else if(niter>=niterMax) {
println("Max iteration reached")
newRank
} else compRank(newRank,A,damp,eps,niter+1,niterMax)
}
}
示例2: MeanAndSD
//设置package包名称以及导入依赖的类
object MeanAndSD {
import scala.collection.GenSeq
def meanAndSD(x: GenSeq[Double]): (Double, Double) = {
val n = x.length
val sx = x.sum
val ssx = (x map (xi=>(xi*xi))).sum
val v = (ssx - sx*sx/n)/(n-1)
(sx/n, math.sqrt(v))
}
def meanAndSD1pass(x: GenSeq[Double]): (Double, Double) = {
val n = x.length
val (sx,ssx) = x.foldLeft((0.0,0.0): (Double,Double))(
(p,xi) => (p._1+xi,p._2+xi*xi)
)
val v = (ssx - sx*sx/n)/(n-1)
(sx/n, math.sqrt(v))
}
def meanAndSD1passPar(x: GenSeq[Double]): (Double, Double) = {
val n = x.length
val (sx,ssx) = x.aggregate((0.0,0.0): (Double,Double))(
(p,xi) => (p._1+xi,p._2+xi*xi),
(p1,p2) => (p1._1+p2._1, p1._2+p2._2)
)
val v = (ssx - sx*sx/n)/(n-1)
(sx/n, math.sqrt(v))
}
def time[A](f: => A) = {
val s = System.nanoTime
val ret = f
println("time: " + (System.nanoTime - s) / 1e6 + "ms")
ret
}
def main(args: Array[String]): Unit = {
println("hello")
println(meanAndSD(Vector(1,4,7)))
println(meanAndSD1pass(Vector(1,4,7)))
println(meanAndSD1passPar(Vector(1,4,7)))
val x = Vector.fill(10000000)(math.random)
val xp = x.par
time { println(meanAndSD(x)) }
time { println(meanAndSD(xp)) }
time { println(meanAndSD1pass(x)) }
time { println(meanAndSD1pass(xp)) }
time { println(meanAndSD1passPar(x)) }
time { println(meanAndSD1passPar(xp)) }
println("goodbye")
}
}
// eof
示例3: KeyValueGroupedDataSetAPIScalaParallelLazyImpl
//设置package包名称以及导入依赖的类
package com.datawizards.sparklocal.impl.scala.parallellazy.dataset
import com.datawizards.sparklocal.dataset.KeyValueGroupedDataSetAPI
import com.datawizards.sparklocal.impl.scala.dataset.{DataSetAPIScalaBase, KeyValueGroupedDataSetAPIScalaBase}
import org.apache.spark.sql.Encoder
import scala.collection.{GenIterable, GenSeq}
import scala.reflect.ClassTag
class KeyValueGroupedDataSetAPIScalaParallelLazyImpl[K: ClassTag, T: ClassTag](private[sparklocal] val data: Map[K, GenSeq[T]]) extends KeyValueGroupedDataSetAPIScalaBase[K, T] {
override type InternalCollection = Map[K, GenSeq[T]]
override private[sparklocal] def create[U: ClassTag](it: GenIterable[U])(implicit enc: Encoder[U]=null): DataSetAPIScalaBase[U] =
DataSetAPIScalaParallelLazyImpl.create(it)
override def mapValues[W: ClassTag](func: (T) => W)
(implicit enc: Encoder[W]=null): KeyValueGroupedDataSetAPI[K, W] = {
val mapped = data.mapValues(_.map(func))
new KeyValueGroupedDataSetAPIScalaParallelLazyImpl(mapped)
}
}
开发者ID:piotr-kalanski,项目名称:spark-local,代码行数:23,代码来源:KeyValueGroupedDataSetAPIScalaParallelLazyImpl.scala
示例4: companion
//设置package包名称以及导入依赖的类
package scala
package collection.parallel
import scala.collection.generic.GenericCompanion
import scala.collection.generic.GenericParCompanion
import scala.collection.generic.GenericParTemplate
import scala.collection.generic.ParFactory
import scala.collection.generic.CanCombineFrom
import scala.collection.GenSeq
import scala.collection.parallel.mutable.ParArrayCombiner
trait ParSeq[+T] extends GenSeq[T]
with ParIterable[T]
with GenericParTemplate[T, ParSeq]
with ParSeqLike[T, ParSeq[T], Seq[T]]
{
override def companion: GenericCompanion[ParSeq] with GenericParCompanion[ParSeq] = ParSeq
//protected[this] override def newBuilder = ParSeq.newBuilder[T]
def apply(i: Int): T
override def toString = super[ParIterable].toString
override def stringPrefix = getClass.getSimpleName
}
object ParSeq extends ParFactory[ParSeq] {
implicit def canBuildFrom[T]: CanCombineFrom[Coll, T, ParSeq[T]] = new GenericCanCombineFrom[T]
def newBuilder[T]: Combiner[T, ParSeq[T]] = ParArrayCombiner[T]
def newCombiner[T]: Combiner[T, ParSeq[T]] = ParArrayCombiner[T]
}