当前位置: 首页>>代码示例>>Scala>>正文


Scala DoubleMatrix类代码示例

本文整理汇总了Scala中org.jblas.DoubleMatrix的典型用法代码示例。如果您正苦于以下问题:Scala DoubleMatrix类的具体用法?Scala DoubleMatrix怎么用?Scala DoubleMatrix使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了DoubleMatrix类的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: Util

//设置package包名称以及导入依赖的类
package com.sparksample


object Util {
  val PATH = "../.."
  val spConfig = (new SparkConf).setMaster("local").setAppName("SparkApp")
  var sc = new SparkContext(spConfig)

  def getMovieData() : RDD[String] = {
    val movie_data = sc.textFile(PATH + "/data/ml-100k/u.item")
    return movie_data
  }
  def getUserData() : RDD[String] = {
    val user_data = sc.textFile(PATH + "/data/ml-100k/u.data")
    return user_data
  }
  def getDate(): String = {
    val today = Calendar.getInstance().getTime()
    // (2) create a date "formatter" (the date format we want)
    val formatter = new SimpleDateFormat("yyyy-MM-dd-hh.mm.ss")

    // (3) create a new String using the date format we want
    val folderName = formatter.format(today)
    return folderName
  }

  def cosineSimilarity(vec1: DoubleMatrix, vec2: DoubleMatrix): Double = {
    vec1.dot(vec2) / (vec1.norm2() * vec2.norm2())
  }

  def avgPrecisionK(actual: Seq[Int], predicted: Seq[Int], k: Int): Double = {
    val predK = predicted.take(k)
    var score = 0.0
    var numHits = 0.0
    for ((p, i) <- predK.zipWithIndex) {
      if (actual.contains(p)) {
        numHits += 1.0
        score += numHits / (i.toDouble + 1.0)
      }
    }
    if (actual.isEmpty) {
      1.0
    } else {
      score / scala.math.min(actual.size, k).toDouble
    }
  }

} 
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:49,代码来源:Util.scala

示例2: UserItemPredictionCommand

//设置package包名称以及导入依赖的类
package com.advancedspark.serving.prediction

import com.netflix.hystrix.HystrixCommand
import com.netflix.hystrix.HystrixCommandGroupKey

import org.jblas.DoubleMatrix

import scala.util.parsing.json._

import com.netflix.dyno.jedis._

import collection.JavaConverters._
import scala.collection.immutable.List

class UserItemPredictionCommand(
      dynoClient: DynoJedisClient, namespace: String, version: String, userId: String, itemId: String)
    extends HystrixCommand[Double](HystrixCommandGroupKey.Factory.asKey("UserItemPrediction")) {

  @throws(classOf[java.io.IOException])
  def get(url: String) = scala.io.Source.fromURL(url).mkString

  def run(): Double = {
    try{
      val userFactors = dynoClient.get(s"${namespace}:${version}:user-factors:${userId}").split(",").map(_.toDouble)
      val itemFactors = dynoClient.get(s"${namespace}:${version}:item-factors:${itemId}").split(",").map(_.toDouble)

      val userFactorsMatrix = new DoubleMatrix(userFactors)
      val itemFactorsMatrix = new DoubleMatrix(itemFactors)
     
      // Calculate prediction 
      userFactorsMatrix.dot(itemFactorsMatrix)
    } catch { 
       case e: Throwable => {
         System.out.println(e) 
         throw e
       }
    }
  }

  override def getFallback(): Double = {
    System.out.println("UserItemPrediction Source is Down!  Fallback!!")

    0.0
  }
} 
开发者ID:frankiegu,项目名称:serve.ml,代码行数:46,代码来源:UserItemPredictionCommand.scala

示例3: ContextRecoMatrices

//设置package包名称以及导入依赖的类
package processing

import java.io.{BufferedReader, FileReader, PrintWriter}

import org.jblas.DoubleMatrix


object ContextRecoMatrices {

  def load(file: String): Array[DoubleMatrix] = {
    val reader: BufferedReader = new BufferedReader(new FileReader(file))
    val d: Int = Integer.parseInt(reader.readLine())
    val res = new Array[DoubleMatrix](d)
    def readMatrix: DoubleMatrix = {
      val dimension: Array[Int] = reader.readLine().split(",").map(_.toInt)
      new DoubleMatrix(dimension(0), dimension(1), reader.readLine().split(",").map(_.toDouble): _*)
    }
    for (i <- 0 until d) {
      res(i) = readMatrix
    }
    return res
  }

  def save(file: String, m: Array[DoubleMatrix]): Unit = {
    val f = new PrintWriter(file)
    f.println(m.length)
    for (i <- 0 until m.length) {
      f.println(s"${m(i).rows},${m(i).columns},${m(i).length}")
      m(i).data.foreach { x => f.print(x); f.print(",") }
      f.println()
    }
    f.close()
  }
} 
开发者ID:srihari,项目名称:recommendr,代码行数:35,代码来源:ContextRecoMatrices.scala

示例4: UserProductRecoModel

//设置package包名称以及导入依赖的类
package processing

import java.io.File

import controllers.Global
import org.apache.spark.mllib.recommendation.{Rating, MatrixFactorizationModel}
import org.apache.spark.rdd.RDD
import org.jblas.DoubleMatrix

class UserProductRecoModel(val weightFactor: Array[Double], rank: Int,
                           userFeatures: RDD[(Int, Array[Double])],
                           productFeatures: RDD[(Int, Array[Double])])
  extends MatrixFactorizationModel(rank, userFeatures, productFeatures) {

  override def recommendProducts(user: Int, num: Int): Array[Rating] = {
    recommend(userFeatures.lookup(user).head, productFeatures, num)
      .map(t => Rating(user, t._1, t._2))
  }

  private def recommend(
                         recommendToFeatures: Array[Double],
                         recommendableFeatures: RDD[(Int, Array[Double])],
                         num: Int): Array[(Int, Double)] = {
    val recommendToVector = new DoubleMatrix(recommendToFeatures)
    val scored = recommendableFeatures.map { case (id,features) =>
      (id, recommendToVector.dot(new DoubleMatrix(features).mul(new DoubleMatrix(weightFactor))))
    }
    scored.top(num)(Ordering.by(_._2))
  }

 def withWeightFactor(weightFactor: Array[Double]): UserProductRecoModel = {
    new UserProductRecoModel(weightFactor, this.rank, this.userFeatures, this.productFeatures)
 }

}

object UserProductRecoModel{
  def apply(model:MatrixFactorizationModel): UserProductRecoModel ={

    val weightFactor:Array[Double] = if (new File("model/featureWeightFactors").exists){ Global.ctx.textFile("model/featureWeightFactors").map(_.toDouble).collect() } else new Array[Double](model.rank).map(x=>1.0)
    new UserProductRecoModel(weightFactor, model.rank, model.userFeatures, model.productFeatures)
  }
} 
开发者ID:srihari,项目名称:recommendr,代码行数:44,代码来源:UserProductRecoModel.scala


注:本文中的org.jblas.DoubleMatrix类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。