本文整理汇总了Scala中org.apache.spark.sql.functions.col类的典型用法代码示例。如果您正苦于以下问题:Scala col类的具体用法?Scala col怎么用?Scala col使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了col类的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: DateTimeColumn
//设置package包名称以及导入依赖的类
package me.danielpes.spark.datetime
import org.apache.spark.sql.Column
import org.apache.spark.sql.types.{DataType, DateType, TimestampType}
import org.apache.spark.sql.functions.{col, udf}
class DateTimeColumn(val col: Column, dataType: DataType = TimestampType) {
def +(p: Period): Column = dataType match {
case _: DateType => udf((d: java.sql.Date) => new RichDate(d) + p).apply(col)
case _: TimestampType => udf((ts: java.sql.Timestamp) => new RichDate(ts) + p).apply(col)
}
def -(p: Period): Column = this.+(-p)
override def toString: String = s"{column: ${col.toString}, type: ${dataType.toString}}"
}
object DateTimeColumn {
def apply(col: Column, dataType: DataType = TimestampType) = new DateTimeColumn(col, dataType)
def apply(col: Column, typeString: String) = new DateTimeColumn(col, typeFromString(typeString))
def apply(cName: String) = new DateTimeColumn(col(cName), TimestampType)
def apply(cName: String, dataType: DataType) = new DateTimeColumn(col(cName), dataType)
def apply(cName: String, typeString: String) = new DateTimeColumn(col(cName), typeFromString(typeString))
private def typeFromString(s: String): DataType = s match {
case "date" => DateType
case "timestamp" => TimestampType
}
}
示例2: WordCounter
//设置package包名称以及导入依赖的类
package com.koverse.example.spark
import org.apache.spark.rdd.RDD
import com.koverse.sdk.data.SimpleRecord
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.functions.col
import org.apache.spark.sql.functions.lower
class WordCounter(
textFieldName: String,
tokenizationString: String) extends java.io.Serializable {
def count(inputRecordsRdd: RDD[SimpleRecord]): RDD[SimpleRecord] = {
// for each Record, tokenize the specified text field and count each occurrence
val wordCountRdd = inputRecordsRdd.flatMap { record => record.get(textFieldName).toString().split(tokenizationString) }
.map { token => token.toLowerCase().trim() }
.map { token => (token, 1) }
.reduceByKey { (a,b) => a + b }
// wordCountRdd is an RDD[(String, Int)] so a (word,count) tuple.
// turn each tuple into an output Record with a "word" and "count" fields
val outputRdd = wordCountRdd.map { case(word, count) => {
val record = new SimpleRecord()
record.put("word", word)
record.put("count", count)
record
}}
outputRdd
}
def count(inputDataFrame: DataFrame): DataFrame = {
// Take the column that contains the text and tokenize and count the words
val wordDF = inputDataFrame.explode(textFieldName, "word") { (text: String) => text.split(tokenizationString) }
wordDF.select(lower(col("word")).as("lowerWord"))
.groupBy("lowerWord")
.count()
}
}
示例3: setFunction
//设置package包名称以及导入依赖的类
package spark.feature
import org.apache.spark.ml.Transformer
import org.apache.spark.ml.attribute.AttributeGroup
import org.apache.spark.ml.param.{ParamMap, _}
import org.apache.spark.ml.util._
import org.apache.spark.sql.functions.{col, udf}
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.{DataFrame, UserDefinedFunction}
def setFunction(value: String=>Double) = set(function, value)
def getFunction() = $(function)
override def transform(dataset: DataFrame): DataFrame = {
val outputSchema = transformSchema(dataset.schema)
val metadata = outputSchema($(outputCol)).metadata
val dummy = udf { x: Any => $(expr) }
var data = dataset.select(col("*"), dummy(col($(inputCols).head)).as("0"))
val substitute: (String => ((String, Double) => String)) = name => (exp, elem) => exp.replace(name, elem.toString)
def subst(v: String) = udf(substitute(v))
$(inputCols).view.zipWithIndex foreach { case (v, i) => data = data.select(col("*"), subst(v)(data(i.toString), data(v)).as((i + 1).toString)).drop(i.toString) }
val eval = udf($(function))
data.select(col("*"), eval(data($(inputCols).length.toString)).as($(outputCol), metadata)).drop($(inputCols).length.toString)
}
override def transformSchema(schema: StructType): StructType = {
// TODO: Assertions on inputCols
val attrGroup = new AttributeGroup($(outputCol), $(numFeatures))
val col = attrGroup.toStructField()
require(!schema.fieldNames.contains(col.name), s"Column ${col.name} already exists.")
StructType(schema.fields :+ col)
}
override def copy(extra: ParamMap): FeatureFuTransformer = defaultCopy(extra)
}