当前位置: 首页>>代码示例>>Scala>>正文


Scala DecisionTree类代码示例

本文整理汇总了Scala中org.apache.spark.mllib.tree.DecisionTree的典型用法代码示例。如果您正苦于以下问题:Scala DecisionTree类的具体用法?Scala DecisionTree怎么用?Scala DecisionTree使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了DecisionTree类的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: DecisionTreeUtil

//设置package包名称以及导入依赖的类
package org.sparksamples.decisiontree

import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.rdd.RDD
import org.sparksamples.Util

import scala.collection.Map
import scala.collection.mutable.ListBuffer


object DecisionTreeUtil {

  def getTrainTestData(): (RDD[LabeledPoint], RDD[LabeledPoint]) = {
    val recordsArray = Util.getRecords()
    val records = recordsArray._1
    val first = records.first()
    val numData = recordsArray._2

    println(numData.toString())
    records.cache()
    print("Mapping of first categorical feature column: " +  Util.get_mapping(records, 2))
    var list = new ListBuffer[Map[String, Long]]()
    for( i <- 2 to 9){
      val m = Util.get_mapping(records, i)
      list += m
    }
    val mappings = list.toList
    var catLen = 0
    mappings.foreach( m => (catLen +=m.size))

    val numLen = records.first().slice(11, 15).size
    val totalLen = catLen + numLen

    val data = {
      records.map(r => LabeledPoint(Util.extractLabel(r), Util.extractFeatures(r, catLen, mappings)))
    }
    val data_dt = {
      records.map(r => LabeledPoint(Util.extractLabel(r), Util.extract_features_dt(r)))
    }

    val splits = data_dt.randomSplit(Array(0.8, 0.2), seed = 11L)
    val training = splits(0).cache()
    val test = splits(1)
    return (training, test)
  }

  def evaluate(train: RDD[LabeledPoint],test: RDD[LabeledPoint],
               categoricalFeaturesInfo: scala.Predef.Map[Int, Int],
                maxDepth :Int, maxBins: Int): Double = {
    val impurity = "variance"
    val decisionTreeModel = DecisionTree.trainRegressor(train, categoricalFeaturesInfo,
      impurity,maxDepth, maxBins )

    val true_vs_predicted = test.map(p => (p.label, decisionTreeModel.predict(p.features)))
    val rmsle = Math.sqrt(true_vs_predicted.map{ case(t, p) => Util.squaredLogError(t, p)}.mean())
    return rmsle
  }

} 
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:61,代码来源:DecisionTreeUtil.scala

示例2: DecisionTreeTest

//设置package包名称以及导入依赖的类
package cn.edu.bjtu


import org.apache.spark.SparkConf
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.sql.SparkSession

object DecisionTreeTest {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf()
      .setAppName("DecisionTreeTest")
      .setMaster("spark://master:7077")
      .setJars(Array("/home/hadoop/DecisionTree.jar"))

    val spark = SparkSession.builder()
      .config(sparkConf)
      .getOrCreate()

    spark.sparkContext.setLogLevel("WARN")

    // Load and parse the data file.
    val data = MLUtils.loadLibSVMFile(spark.sparkContext, "hdfs://master:9000/sample_formatted.txt")

    // Split the data into training and test sets (30% held out for testing)
    val splits = data.randomSplit(Array(0.7, 0.3))

    val (training, test) = (splits(0), splits(1))

    // Train a DecisionTree model.
    //  Empty categoricalFeaturesInfo indicates all features are continuous.
    val numClasses = 2
    val categoricalFeaturesInfo = Map[Int, Int]()
    val impurity = "entropy" // Also, we can use entrophy
    val maxDepth = 14
    val maxBins = 16384

    val model = DecisionTree.trainClassifier(training, numClasses, categoricalFeaturesInfo,
      impurity, maxDepth, maxBins)

    val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
      val prediction = model.predict(features)
      (prediction, label)
    }
    val metrics = new BinaryClassificationMetrics(predictionAndLabels)
    val auROC = metrics.areaUnderROC()
    println("Area under ROC = " + auROC)
    println("Sensitivity = " + predictionAndLabels.filter(x => x._1 == x._2 && x._1 == 1.0).count().toDouble / predictionAndLabels.filter(x => x._2 == 1.0).count().toDouble)
    println("Specificity = " + predictionAndLabels.filter(x => x._1 == x._2 && x._1 == 0.0).count().toDouble / predictionAndLabels.filter(x => x._2 == 0.0).count().toDouble)
    println("Accuracy = " + predictionAndLabels.filter(x => x._1 == x._2).count().toDouble / predictionAndLabels.count().toDouble)
  }
} 
开发者ID:XiaoyuGuo,项目名称:DataFusionClass,代码行数:55,代码来源:DecisionTreeTest.scala

示例3: DecisionTreeTest

//设置package包名称以及导入依赖的类
package org.apache.spark.examples.mllib
import org.apache.spark.{ SparkConf, SparkContext }
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.tree.configuration.Algo._
import org.apache.spark.mllib.tree.impurity.Gini

object DecisionTreeTest {
  def main(args: Array[String]) {
    val sparkConf = new SparkConf().setMaster("local[2]").setAppName("KMeansClustering")
    val sc = new SparkContext(sparkConf)
    val data = sc.textFile("../data/mllib/sample_tree_data.csv")    
    val parsedData = data.map { line =>
      val parts = line.split(',').map(_.toDouble)
      //LabeledPoint????????,?????????????,????????????(label)
      LabeledPoint(parts(0), Vectors.dense(parts.tail))
    }

    val maxDepth = 5//??????,???????,?????????
    val model = DecisionTree.train(parsedData, Classification, Gini, maxDepth)

    val labelAndPreds = parsedData.map { point =>
      val prediction = model.predict(point.features)
      (point.label, prediction)
    }
    val trainErr = labelAndPreds.filter(r => r._1 != r._2).count().toDouble / parsedData.count
    println("Training Error = " + trainErr)
  }
} 
开发者ID:tophua,项目名称:spark1.52,代码行数:31,代码来源:DecisionTreeTest.scala


注:本文中的org.apache.spark.mllib.tree.DecisionTree类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。