本文整理汇总了Scala中org.apache.spark.mllib.regression.LabeledPoint类的典型用法代码示例。如果您正苦于以下问题:Scala LabeledPoint类的具体用法?Scala LabeledPoint怎么用?Scala LabeledPoint使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了LabeledPoint类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: KMeansClusteringApp
//设置package包名称以及导入依赖的类
package org.apress.prospark
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.mllib.clustering.StreamingKMeans
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.rdd.RDD.doubleRDDToDoubleRDDFunctions
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext
object KMeansClusteringApp {
def main(args: Array[String]) {
if (args.length != 4) {
System.err.println(
"Usage: KMeansClusteringApp <appname> <batchInterval> <hostname> <port>")
System.exit(1)
}
val Seq(appName, batchInterval, hostname, port) = args.toSeq
val conf = new SparkConf()
.setAppName(appName)
.setJars(SparkContext.jarOfClass(this.getClass).toSeq)
val ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))
val substream = ssc.socketTextStream(hostname, port.toInt)
.filter(!_.contains("NaN"))
.map(_.split(" "))
.filter(f => f(1) != "0")
val orientationStream = substream
.map(f => Seq(1, 4, 5, 6, 10, 11, 12, 20, 21, 22, 26, 27, 28, 36, 37, 38, 42, 43, 44).map(i => f(i)).toArray)
.map(arr => arr.map(_.toDouble))
.filter(f => f(0) == 1.0 || f(0) == 2.0 || f(0) == 3.0)
.map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, f.length))))
val test = orientationStream.transform(rdd => rdd.randomSplit(Array(0.3, 0.7))(0))
val train = orientationStream.transformWith(test, (r1: RDD[LabeledPoint], r2: RDD[LabeledPoint]) => r1.subtract(r2)).cache()
val model = new StreamingKMeans()
.setK(3)
.setDecayFactor(0)
.setRandomCenters(18, 0.0)
model.trainOn(train.map(v => v.features))
val prediction = model.predictOnValues(test.map(v => (v.label, v.features)))
ssc.start()
ssc.awaitTermination()
}
}
示例2: MllibLBFGS
//设置package包名称以及导入依赖的类
package optimizers
import breeze.linalg.{DenseVector, Vector}
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
import org.apache.spark.mllib.optimization.{L1Updater, SimpleUpdater, SquaredL2Updater, Updater}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import utils.Functions._
class MllibLBFGS(val data: RDD[LabeledPoint],
loss: LossFunction,
regularizer: Regularizer,
params: LBFGSParameters
) extends Optimizer(loss, regularizer) {
val opt = new LogisticRegressionWithLBFGS
val reg: Updater = (regularizer: Regularizer) match {
case _: L1Regularizer => new L1Updater
case _: L2Regularizer => new SquaredL2Updater
case _: Unregularized => new SimpleUpdater
}
opt.optimizer.
setNumIterations(params.iterations).
setConvergenceTol(params.convergenceTol).
setNumCorrections(params.numCorrections).
setRegParam(regularizer.lambda).
setUpdater(reg)
override def optimize(): Vector[Double] = {
val model = opt.run(data)
val w = model.weights.toArray
return DenseVector(w)
}
}
示例3: Classifier
//设置package包名称以及导入依赖的类
package edu.neu.coe.scala.spark.spam
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
object Classifier extends App {
val conf = new SparkConf().setAppName("spam")
val sc = new SparkContext(conf)
val spam = sc.textFile("spam.txt")
val norm = sc.textFile("normal.txt")
val tf = new HashingTF(10000)
val spamFeatures = spam.map(email => tf.transform(email.split(" ")))
val normFeatures = norm.map(email => tf.transform(email.split(" ")))
val posExamples = spamFeatures.map(f => LabeledPoint(1, f))
val negExamples = normFeatures.map(f => LabeledPoint(0, f))
val trainingData = posExamples.union(negExamples)
trainingData.cache()
val model = new LogisticRegressionWithSGD().run(trainingData)
val posTest = tf.transform("Subject: Cheap Stuff From: <omg.fu> O M G GET cheap stuff by sending money to Robin Hillyard".split(" "))
val negTest = tf.transform("Subject: Spark From: Robin Hillyard<[email protected]> Hi Adam, I started studying Spark the other day".split(" "))
println(s"Prediction for positive test example: ${model.predict(posTest)}")
println(s"Prediction for negative test example: ${model.predict(negTest)}")
}
示例4: SVMPipeline
//设置package包名称以及导入依赖的类
package org.stumbleuponclassifier
import org.apache.log4j.Logger
import org.apache.spark.SparkContext
import org.apache.spark.mllib.classification.SVMWithSGD
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
object SVMPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def svmPipeline(sc: SparkContext) = {
val records = sc.textFile("/home/ubuntu/work/ml-resources/spark-ml/train_noheader.tsv").map(line => line.split("\t"))
val data = records.map { r =>
val trimmed = r.map(_.replaceAll("\"", ""))
val label = trimmed(r.size - 1).toInt
val features = trimmed.slice(4, r.size - 1).map(d => if (d == "?") 0.0 else d.toDouble)
LabeledPoint(label, Vectors.dense(features))
}
// params for SVM
val numIterations = 10
// Run training algorithm to build the model
val svmModel = SVMWithSGD.train(data, numIterations)
// Clear the default threshold.
svmModel.clearThreshold()
val svmTotalCorrect = data.map { point =>
if(svmModel.predict(point.features) == point.label) 1 else 0
}.sum()
// calculate accuracy
val svmAccuracy = svmTotalCorrect / data.count()
println(svmAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:42,代码来源:SVMPipeline.scala
示例5: MllibSGD
//设置package包名称以及导入依赖的类
package optimizers
import breeze.linalg.{DenseVector, Vector}
import org.apache.spark.mllib.classification.{LogisticRegressionWithSGD, SVMWithSGD}
import org.apache.spark.mllib.optimization.{L1Updater, SimpleUpdater, SquaredL2Updater, Updater}
import org.apache.spark.mllib.regression.{LabeledPoint, LinearRegressionWithSGD}
import org.apache.spark.rdd.RDD
import utils.Functions._
import scala.tools.cmd.gen.AnyVals.D
class MllibSGD(val data: RDD[LabeledPoint],
loss: LossFunction,
regularizer: Regularizer,
params: SGDParameters,
ctype: String
) extends Optimizer(loss, regularizer) {
val opt = ctype match {
case "SVM" => new SVMWithSGD()
case "LR" => new LogisticRegressionWithSGD()
case "Regression" => new LinearRegressionWithSGD()
}
val reg: Updater = (regularizer: Regularizer) match {
case _: L1Regularizer => new L1Updater
case _: L2Regularizer => new SquaredL2Updater
case _: Unregularized => new SimpleUpdater
}
ctype match {
case "SVM" => opt.asInstanceOf[SVMWithSGD].optimizer.
setNumIterations(params.iterations).
setMiniBatchFraction(params.miniBatchFraction).
setStepSize(params.stepSize).
setRegParam(regularizer.lambda).
setUpdater(reg)
case "LR" => opt.asInstanceOf[LogisticRegressionWithSGD].optimizer.
setNumIterations(params.iterations).
setMiniBatchFraction(params.miniBatchFraction).
setStepSize(params.stepSize).
setRegParam(regularizer.lambda).
setUpdater(reg)
case "Regression" => opt.asInstanceOf[LinearRegressionWithSGD].optimizer.
setNumIterations(params.iterations).
setMiniBatchFraction(params.miniBatchFraction).
setStepSize(params.stepSize).
setRegParam(regularizer.lambda).
setUpdater(reg)
}
override def optimize(): Vector[Double] = {
val model = opt.run(data)
val w = model.weights.toArray
DenseVector(w)
}
}
示例6: CocoaParameters
//设置package包名称以及导入依赖的类
package optimizers
import java.io.Serializable
import breeze.linalg.DenseVector
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
class CocoaParameters(var n: Int,
var numRounds: Int,
var localIterFrac: Double,
var lambda: Double,
var beta: Double,
var gamma: Double,
var numParts: Int,
var wInit: DenseVector[Double]) extends Serializable {
def this(train: RDD[LabeledPoint], test: RDD[LabeledPoint]) {
this(train.count().toInt,
200,
1.0,
0.01,
1.0,
1.0,
train.partitions.size,
DenseVector.zeros[Double](train.first().features.size))
}
def getLocalIters() = (localIterFrac * n / numParts).toInt
def getDistOptPar(): distopt.utils.Params ={
val loss = distopt.utils.OptUtils.hingeLoss _
return distopt.utils.Params(loss, n, wInit, numRounds, getLocalIters, lambda, beta, gamma)
}
override def toString = s"CocoaParameters(n: $n, numRounds: $numRounds, localIters: $getLocalIters, " +
s"lambda: $lambda, beta: $beta, gamma: $gamma, wInit: $wInit)"
}
示例7: ProxCocoaParameters
//设置package包名称以及导入依赖的类
package optimizers
import java.io.Serializable
import breeze.linalg.SparseVector
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
class ProxCocoaParameters(var n: Int,
var iterations: Int,
var localIterFrac: Double,
var lambda: Double,
var eta: Double,
var numFeature: Int,
var numParts: Int,
var alphaInit: SparseVector[Double]) extends Serializable {
def this(train: RDD[LabeledPoint], test: RDD[LabeledPoint], eta: Double = 0.5) {
this(train.count().toInt,
100,
0.9,
0.1,
eta,
train.first().features.size,
train.partitions.size,
SparseVector.zeros[Double](train.first().features.size))
}
def getLocalIters = Math.max(1, (localIterFrac * numFeature / numParts).toInt)
def getL1DistOptPar(): l1distopt.utils.Params = {
return l1distopt.utils.Params(alphaInit, n, iterations, getLocalIters, lambda, eta)
}
override def toString = s"ProxCocoaParameters(n: $n, iterations: $iterations, " +
s"localIters: $getLocalIters, lambda: $lambda, eta: $eta, alphaInit: $alphaInit)"
}
示例8: wilcoxon
//设置package包名称以及导入依赖的类
package org.robertdodier
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object wilcoxon
{
def U (XC: RDD[(Double, Int)]): Double =
{
val XC_sorted = XC.sortBy { case (a, b) => a }
val foo = XC_sorted.zipWithIndex ()
val bar = foo.map { case ((a, b), c) => (a, (b, c)) }
val baz = bar.aggregateByKey ((0L, 0L)) ( {case ((a, b), (c, d)) => (a + 1, b + d)}, {case ((a, b), (c, d)) => (a + c, b + d)} )
val quux = baz.map { case (a, (b, c)) => (a, c/b.toDouble) }
val mumble = XC_sorted.join (quux)
val blurf = mumble.filter { case (a, (b, c)) => b == 1 }
val rank_sum = blurf.aggregate (0.0) ( {case (a, (b, (c, d))) => a + d}, {(a, b) => a + b} )
val n = mumble.count ()
val n1 = blurf.count ()
val n0 = n - n1
((rank_sum + n1) - n1*(n1 + 1.0)/2.0)/(n1 * n0.toDouble)
}
def allU (CXXX : RDD[LabeledPoint]): Seq[Double] =
{
val m = CXXX.first ().features.size
0 to m - 1 map (i => U (CXXX.map (p => (p.features(i), p.label.toInt))))
}
def main (args: Array[String]): Unit = {
val conf = new SparkConf ().setAppName ("wilcoxon")
val sc = new SparkContext (conf)
run_example (sc)
}
def run_example (sc: SparkContext) = {
val rng = new java.util.Random (1L)
val data0 = for (i <- Range (0, 1000)) yield (rng.nextGaussian, 0)
for (i <- Range (0, 3)) {
val mean_diff = 0.5*i
val data1 = for (i <- Range (0, 1000)) yield (mean_diff + rng.nextGaussian, 1)
val data = sc.parallelize (data0 ++ data1)
val myU = U (data)
System.out.println (s"difference of means = $mean_diff; U/(n1*n0) = $myU")
}
for (i <- Range (0, 3)) {
val mean_diff = - 0.5*(i + 1)
val data1 = for (i <- Range (0, 1000)) yield (mean_diff + rng.nextGaussian, 1)
val data = sc.parallelize (data0 ++ data1)
val myU = U (data)
System.out.println (s"difference of means = $mean_diff; U/(n1*n0) = $myU")
}
}
}
示例9: TitanicBayes
//设置package包名称以及导入依赖的类
import org.apache.spark.mllib.classification.{NaiveBayes, NaiveBayesModel}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row}
object TitanicBayes {
var naiveBayesModel: NaiveBayesModel = null
def train(df: DataFrame): Unit = {
val mappedDf = df.map(row =>
(row.getAs[Int]("Survived"), row.getAs[Double]("Fare"), row.getAs[Int]("Pclass"), row.getAs[Double]("Age")
,row.getAs[Int]("Sex"), row.getAs[Int]("Parch"), row.getAs[Int]("SibSp"),row.getAs[Int]("Embarked")))
val labledData = mappedDf.map { case (survived, fare, pclass, age, sex, parch, sibsp, embarked) =>
LabeledPoint(survived, Vectors.dense(fare, pclass, age, sex, parch, sibsp, embarked))
}
naiveBayesModel = NaiveBayes.train(labledData, lambda = 1.0, modelType = "multinomial")
}
def predict(df: DataFrame): RDD[Row] = {
val resultDf = df.map { row =>
val denseVecor = Vectors.dense(row.getAs[Double]("Fare"), row.getAs[Int]("Pclass"), row.getAs[Double]("Age"),row.getAs[Int]("Sex"),
row.getAs[Int]("Parch"), row.getAs[Int]("SibSp"), row.getAs[Int]("Embarked") )
val result = naiveBayesModel.predict(denseVecor)
Row.fromTuple((row.getAs[Int]("PassengerId"), result.toInt))
}
resultDf
}
}
示例10: StreamingSimpleModel
//设置package包名称以及导入依赖的类
package com.bigchange.streaming
import breeze.linalg.DenseVector
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.{LabeledPoint, StreamingLinearRegressionWithSGD}
import org.apache.spark.streaming.{Seconds, StreamingContext}
object StreamingSimpleModel {
def main(args: Array[String]) {
val ssc = new StreamingContext("local","test",Seconds(10))
val stream = ssc.socketTextStream("localhost",9999)
val numberFeatures = 100
val zeroVector = DenseVector.zeros[Double](numberFeatures)
val model = new StreamingLinearRegressionWithSGD()
.setInitialWeights(Vectors.dense(zeroVector.data))
.setNumIterations(1)
.setStepSize(0.01)
val labeledStream = stream.map { event =>
val split = event.split("\t")
val y = split(0).toDouble
val features = split(1).split(",").map(_.toDouble)
LabeledPoint(label = y, features = Vectors.dense(features))
}
model.trainOn(labeledStream)
// ??DStream?????
val predictAndTrue = labeledStream.transform { rdd =>
val latestModel = model.latestModel()
rdd.map { point =>
val predict = latestModel.predict(point.features)
predict - point.label
}
}
// ??MSE
predictAndTrue.foreachRDD { rdd =>
val mse = rdd.map(x => x * x).mean()
val rmse = math.sqrt(mse)
println(s"current batch, MSE: $mse, RMSE:$rmse")
}
ssc.start()
ssc.awaitTermination()
}
}
示例11: FeaturesParser
//设置package包名称以及导入依赖的类
package com.evrenio.ml
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
object FeaturesParser{
def parseFeatures(rawdata: RDD[String]): RDD[Vector] = {
val rdd: RDD[Array[Double]] = rawdata.map(_.split(",").map(_.toDouble))
val vectors: RDD[Vector] = rdd.map(arrDouble => Vectors.dense(arrDouble))
vectors
}
def parseFeaturesWithLabel(cvData: RDD[String]): RDD[LabeledPoint] = {
val rdd: RDD[Array[Double]] = cvData.map(_.split(",").map(_.toDouble))
val labeledPoints = rdd.map(arrDouble => new LabeledPoint(arrDouble(0), Vectors.dense(arrDouble.slice(1, arrDouble.length))))
labeledPoints
}
}
示例12: DecisionTreeUtil
//设置package包名称以及导入依赖的类
package org.sparksamples.decisiontree
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.rdd.RDD
import org.sparksamples.Util
import scala.collection.Map
import scala.collection.mutable.ListBuffer
object DecisionTreeUtil {
def getTrainTestData(): (RDD[LabeledPoint], RDD[LabeledPoint]) = {
val recordsArray = Util.getRecords()
val records = recordsArray._1
val first = records.first()
val numData = recordsArray._2
println(numData.toString())
records.cache()
print("Mapping of first categorical feature column: " + Util.get_mapping(records, 2))
var list = new ListBuffer[Map[String, Long]]()
for( i <- 2 to 9){
val m = Util.get_mapping(records, i)
list += m
}
val mappings = list.toList
var catLen = 0
mappings.foreach( m => (catLen +=m.size))
val numLen = records.first().slice(11, 15).size
val totalLen = catLen + numLen
val data = {
records.map(r => LabeledPoint(Util.extractLabel(r), Util.extractFeatures(r, catLen, mappings)))
}
val data_dt = {
records.map(r => LabeledPoint(Util.extractLabel(r), Util.extract_features_dt(r)))
}
val splits = data_dt.randomSplit(Array(0.8, 0.2), seed = 11L)
val training = splits(0).cache()
val test = splits(1)
return (training, test)
}
def evaluate(train: RDD[LabeledPoint],test: RDD[LabeledPoint],
categoricalFeaturesInfo: scala.Predef.Map[Int, Int],
maxDepth :Int, maxBins: Int): Double = {
val impurity = "variance"
val decisionTreeModel = DecisionTree.trainRegressor(train, categoricalFeaturesInfo,
impurity,maxDepth, maxBins )
val true_vs_predicted = test.map(p => (p.label, decisionTreeModel.predict(p.features)))
val rmsle = Math.sqrt(true_vs_predicted.map{ case(t, p) => Util.squaredLogError(t, p)}.mean())
return rmsle
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:61,代码来源:DecisionTreeUtil.scala
示例13: SVMPipeline
//设置package包名称以及导入依赖的类
package org.sparksamples.classification.stumbleupon
import org.apache.log4j.Logger
import org.apache.spark.SparkContext
import org.apache.spark.mllib.classification.SVMWithSGD
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
object SVMPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def svmPipeline(sc: SparkContext) = {
val records = sc.textFile("/home/ubuntu/work/ml-resources/spark-ml/train_noheader.tsv").map(line => line.split("\t"))
val data = records.map { r =>
val trimmed = r.map(_.replaceAll("\"", ""))
val label = trimmed(r.size - 1).toInt
val features = trimmed.slice(4, r.size - 1).map(d => if (d == "?") 0.0 else d.toDouble)
LabeledPoint(label, Vectors.dense(features))
}
// params for SVM
val numIterations = 10
// Run training algorithm to build the model
val svmModel = SVMWithSGD.train(data, numIterations)
// Clear the default threshold.
svmModel.clearThreshold()
val svmTotalCorrect = data.map { point =>
if(svmModel.predict(point.features) == point.label) 1 else 0
}.sum()
// calculate accuracy
val svmAccuracy = svmTotalCorrect / data.count()
println(svmAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:42,代码来源:SVMPipeline.scala
示例14: MLLibRandomForestModel
//设置package包名称以及导入依赖的类
package com.asto.dmp.articlecate.biz
import com.asto.dmp.articlecate.base.Props
import com.asto.dmp.articlecate.utils.FileUtils
import org.apache.spark.{Logging, SparkContext}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.tree.RandomForest
import org.apache.spark.mllib.tree.model.RandomForestModel
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.rdd.RDD
import com.asto.dmp.articlecate.biz.ClsFeaturesParser._
import scala.collection._
class MLLibRandomForestModel(val sc: SparkContext, val modelPath: String) extends scala.Serializable with Logging {
def genRandomForestModel(svmTrainDataPath: String) = {
val numClasses = ClsFeaturesParser.clsNameToCodeMap.size //Util.parseMapFrom(clsIndicesPath, nameToCode = true).size
val categoricalFeaturesInfo = immutable.Map[Int, Int]()
val numTrees = Props.get("model_numTrees").toInt
val featureSubsetStrategy = Props.get("model_featureSubsetStrategy") // Let the algorithm choose.
val impurity = Props.get("model_impurity")
val maxDepth = Props.get("model_maxDepth").toInt
val maxBins = Props.get("model_maxBins").toInt
val trainingData = MLUtils.loadLibSVMFile(sc, svmTrainDataPath).cache()
val model = RandomForest.trainClassifier(trainingData, numClasses, categoricalFeaturesInfo,
numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins)
FileUtils.deleteFilesInHDFS(modelPath)
model.save(sc, modelPath)
testErrorRate(trainingData, model)
}
private def testErrorRate(trainingData: RDD[LabeledPoint], model: RandomForestModel) = {
if (Props.get("model_test").toBoolean) {
val testData = trainingData.sample(false, Props.get("model_sampleRate").toDouble)
val labelAndPreds = testData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val testError = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / testData.count()
logInfo(s"????????????$testError")
} else {
logInfo(s"???????????")
}
}
def predictAndSave(lineAndVectors: Array[(String, org.apache.spark.mllib.linalg.Vector)], resultPath: String) = {
val model = RandomForestModel.load(sc, modelPath)
val result = lineAndVectors.map(lv => (s"${clsCodeToNameMap(model.predict(lv._2).toInt.toString)}\t${lv._1}")).mkString("\n")
FileUtils.saveFileToHDFS(resultPath, result)
}
}
示例15: FeatureExtractionApp
//设置package包名称以及导入依赖的类
package org.apress.prospark
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.mllib.feature.ChiSqSelector
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext
object FeatureExtractionApp {
def main(args: Array[String]) {
if (args.length != 4) {
System.err.println(
"Usage: FeatureExtractionApp <appname> <batchInterval> <hostname> <port>")
System.exit(1)
}
val Seq(appName, batchInterval, hostname, port) = args.toSeq
val conf = new SparkConf()
.setAppName(appName)
.setJars(SparkContext.jarOfClass(this.getClass).toSeq)
val ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))
val substream = ssc.socketTextStream(hostname, port.toInt)
.filter(!_.contains("NaN"))
.map(_.split(" "))
.filter(f => f(1) != "0")
val datastream = substream.map(f => Array(f(1), f(4), f(5), f(6), f(20), f(21), f(22), f(36), f(37), f(38)))
.map(f => f.map(v => v.toDouble))
.map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, f.length).map(f => f / 2048))))
datastream.foreachRDD(rdd => {
val selector = new ChiSqSelector(5)
val model = selector.fit(rdd)
val filtered = rdd.map(p => LabeledPoint(p.label, model.transform(p.features)))
filtered.take(20).foreach(println)
})
ssc.start()
ssc.awaitTermination()
}
}