当前位置: 首页>>代码示例>>Scala>>正文


Scala L1Updater类代码示例

本文整理汇总了Scala中org.apache.spark.mllib.optimization.L1Updater的典型用法代码示例。如果您正苦于以下问题:Scala L1Updater类的具体用法?Scala L1Updater怎么用?Scala L1Updater使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了L1Updater类的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: MllibLBFGS

//设置package包名称以及导入依赖的类
package optimizers

import breeze.linalg.{DenseVector, Vector}
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
import org.apache.spark.mllib.optimization.{L1Updater, SimpleUpdater, SquaredL2Updater, Updater}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import utils.Functions._


class MllibLBFGS(val data: RDD[LabeledPoint],
                 loss: LossFunction,
                 regularizer: Regularizer,
                 params: LBFGSParameters
                ) extends Optimizer(loss, regularizer) {

  val opt = new LogisticRegressionWithLBFGS

  val reg: Updater = (regularizer: Regularizer) match {
    case _: L1Regularizer => new L1Updater
    case _: L2Regularizer => new SquaredL2Updater
    case _: Unregularized => new SimpleUpdater
  }

  opt.optimizer.
    setNumIterations(params.iterations).
    setConvergenceTol(params.convergenceTol).
    setNumCorrections(params.numCorrections).
    setRegParam(regularizer.lambda).
    setUpdater(reg)

  override def optimize(): Vector[Double] = {
    val model = opt.run(data)
    val w = model.weights.toArray
    return DenseVector(w)
  }
} 
开发者ID:mlbench,项目名称:mlbench,代码行数:38,代码来源:MllibLBFGS.scala

示例2: MllibSGD

//设置package包名称以及导入依赖的类
package optimizers

import breeze.linalg.{DenseVector, Vector}
import org.apache.spark.mllib.classification.{LogisticRegressionWithSGD, SVMWithSGD}
import org.apache.spark.mllib.optimization.{L1Updater, SimpleUpdater, SquaredL2Updater, Updater}
import org.apache.spark.mllib.regression.{LabeledPoint, LinearRegressionWithSGD}
import org.apache.spark.rdd.RDD
import utils.Functions._

import scala.tools.cmd.gen.AnyVals.D




class MllibSGD(val data: RDD[LabeledPoint],
               loss: LossFunction,
               regularizer: Regularizer,
               params: SGDParameters,
               ctype: String
              ) extends Optimizer(loss, regularizer) {
  val opt = ctype match {
    case "SVM" => new SVMWithSGD()
    case "LR" => new LogisticRegressionWithSGD()
    case "Regression" => new LinearRegressionWithSGD()
  }

  val reg: Updater = (regularizer: Regularizer) match {
    case _: L1Regularizer => new L1Updater
    case _: L2Regularizer => new SquaredL2Updater
    case _: Unregularized => new SimpleUpdater
  }

  ctype match {
    case "SVM" => opt.asInstanceOf[SVMWithSGD].optimizer.
      setNumIterations(params.iterations).
      setMiniBatchFraction(params.miniBatchFraction).
      setStepSize(params.stepSize).
      setRegParam(regularizer.lambda).
      setUpdater(reg)
    case "LR" => opt.asInstanceOf[LogisticRegressionWithSGD].optimizer.
      setNumIterations(params.iterations).
      setMiniBatchFraction(params.miniBatchFraction).
      setStepSize(params.stepSize).
      setRegParam(regularizer.lambda).
      setUpdater(reg)
    case "Regression" => opt.asInstanceOf[LinearRegressionWithSGD].optimizer.
      setNumIterations(params.iterations).
      setMiniBatchFraction(params.miniBatchFraction).
      setStepSize(params.stepSize).
      setRegParam(regularizer.lambda).
      setUpdater(reg)
  }

  override def optimize(): Vector[Double] = {
    val model = opt.run(data)
    val w = model.weights.toArray
    DenseVector(w)
  }
} 
开发者ID:mlbench,项目名称:mlbench,代码行数:60,代码来源:MllibSGD.scala


注:本文中的org.apache.spark.mllib.optimization.L1Updater类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。