本文整理汇总了Scala中org.apache.spark.mllib.linalg.distributed.MatrixEntry类的典型用法代码示例。如果您正苦于以下问题:Scala MatrixEntry类的具体用法?Scala MatrixEntry怎么用?Scala MatrixEntry使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了MatrixEntry类的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: Utils
//设置package包名称以及导入依赖的类
package com.github.aadamson.spark_glove
import org.apache.spark.{SparkConf, SparkContext};
import org.apache.spark.mllib.linalg.{Vector, Vectors, Matrix, Matrices, DenseMatrix};
import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, BlockMatrix, RowMatrix, MatrixEntry, IndexedRow, IndexedRowMatrix};
import org.apache.spark.rdd.RDD;
object Utils {
type CoordinateRDD[T] = RDD[((Long, Long), T)];
implicit def CoordinateRDD2CoordinateMatrix(a: CoordinateRDD[Float]): CoordinateMatrix = {
val entries: RDD[MatrixEntry] = a.map { case ((i, j), value) => new MatrixEntry(i, j, value) };
val mat: CoordinateMatrix = new CoordinateMatrix(entries);
return mat;
}
def broadcastVector(v: Vector, numRows: Int, sc: SparkContext): IndexedRowMatrix = {
val rows: RDD[IndexedRow] = sc.parallelize(0 to numRows-1).map(i => new IndexedRow(i, v));
val mat: IndexedRowMatrix = new IndexedRowMatrix(rows);
return mat;
}
def elementwiseProduct[T](a: T, b: T): T = (a, b) match {
case (x: BlockMatrix, y: BlockMatrix) => {
val aIRM = x.toIndexedRowMatrix();
val bIRM = y.toIndexedRowMatrix();
val rows = aIRM.rows.zip(bIRM.rows).map {
case (aRow: IndexedRow, bRow: IndexedRow) => new IndexedRow(aRow.index, elementwiseProduct(aRow.vector, bRow.vector));
}
return (new IndexedRowMatrix(rows)).toBlockMatrix().asInstanceOf[T];
}
case (x: Vector, y: Vector) => {
val values = Array(x.toArray, y.toArray);
return Vectors.dense(values.transpose.map(_.sum)).asInstanceOf[T];;
}
}
}
示例2: MapperSpec
//设置package包名称以及导入依赖的类
package com.github.log0ymxm.mapper
import org.scalatest._
import com.holdenkarau.spark.testing.SharedSparkContext
import org.apache.spark.sql.{ SparkSession, Row }
import org.apache.spark.mllib.linalg.distributed.{ CoordinateMatrix, IndexedRow, IndexedRowMatrix, MatrixEntry }
import org.apache.spark.mllib.linalg.{ DenseVector, Vector, Vectors }
class MapperSpec extends FunSuite with SharedSparkContext {
test("simple mapper on noisy circle") {
val spark = SparkSession.builder().getOrCreate()
val fileLoc = getClass.getClassLoader.getResource("circles.csv").getPath()
val circle = spark.read
.option("header", false)
.option("inferSchema", true)
.csv(fileLoc)
assert(circle.count == 400)
val indexedRDD = circle.rdd.zipWithIndex.map {
case (Row(x: Double, y: Double), i) =>
val v: Vector = new DenseVector(Array(x, y))
IndexedRow(i, v)
}
val matrix = new IndexedRowMatrix(indexedRDD)
val similarities = matrix.toCoordinateMatrix
.transpose()
.toIndexedRowMatrix()
.columnSimilarities()
val distances = new CoordinateMatrix(
similarities
.entries
.map((entry) => new MatrixEntry(entry.i, entry.j, 1 - entry.value))
)
val filtration = new IndexedRowMatrix(indexedRDD.map({ row =>
IndexedRow(row.index, new DenseVector(Array(
Vectors.norm(row.vector, 2)
)))
}))
//Mapper.writeAsJson(graph, "mapper-vis/circle-graph.json")
val graph = Mapper.mapper(sc, distances, filtration, 100, 2.0)
assert(graph.vertices.count == 160)
assert(graph.edges.count == 327)
}
}
示例3: Blocks
//设置package包名称以及导入依赖的类
package hr.fer.ztel.thesis.multiplication.block
import hr.fer.ztel.thesis.datasource.MatrixEntryDataSource._
import hr.fer.ztel.thesis.spark.SparkSessionHandler
import hr.fer.ztel.thesis.sparse_linalg.SparseVectorOperators._
import org.apache.spark.mllib.linalg.MLlibBreezeConversions._
import org.apache.spark.mllib.linalg.distributed.MLlibBlockMatrixMultiplyVersion220._
import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, MatrixEntry}
object Blocks {
def main(args: Array[String]): Unit = {
val handler = new SparkSessionHandler(args)
implicit val spark = handler.getSparkSession
val userItemEntries = readUserItemEntries(handler.userItemPath)
val itemItemEntries = readItemItemEntries(handler.itemItemPath, handler.measure, handler.normalize)
// precomputed max number (upper bound) with C++ indexer,
// it is possible that some users were filtered by quantity treshold
val numUsers = spark.read.textFile(handler.usersSizePath).first.toInt
val numItems = spark.read.textFile(handler.itemsSizePath).first.toInt
val B = handler.blockSize
val C = new CoordinateMatrix(userItemEntries, numUsers, numItems).toBlockMatrix(B, B)
val S = new CoordinateMatrix(itemItemEntries, numItems, numItems).toBlockMatrix(B, B)
val R = multiply(C, S)
val userSeenItemsBroadcast = spark.sparkContext.broadcast(
userItemEntries
.map { case MatrixEntry(user, item, _) => (user.toInt, item.toInt) }
.groupByKey.mapValues(_.toSet)
.collectAsMap.toMap
)
val recommendations = R.toIndexedRowMatrix.rows.mapPartitions {
val localUserSeenItems = userSeenItemsBroadcast.value
_.filter(row => localUserSeenItems.contains(row.index.toInt))
.map { row =>
val user = row.index.toInt
val unseenItems = row.vector.toBreeze.activeIterator
.filterNot { case (item, _) => localUserSeenItems(user).contains(item) }
val unseenTopKItems = argTopK(unseenItems.toArray, handler.topK)
s"$user:${unseenTopKItems.mkString(",")}"
}
}
recommendations.saveAsTextFile(handler.recommendationsPath)
println(s"Recommendations saved in: ${handler.recommendationsPath}")
}
}