本文整理汇总了Scala中org.apache.spark.mllib.linalg.Vectors类的典型用法代码示例。如果您正苦于以下问题:Scala Vectors类的具体用法?Scala Vectors怎么用?Scala Vectors使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Vectors类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: SimpleApp
//设置package包名称以及导入依赖的类
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.ml.clustering.LDA
import org.apache.spark.mllib.linalg.{VectorUDT, Vectors}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.types.{StructField, StructType}
object SimpleApp {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Simple Application").set("spark.ui.enabled", "false")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
// Loads data
val rowRDD = sc.textFile("/tmp/lda_data.txt").filter(_.nonEmpty)
.map(_.split(" ").map(_.toDouble)).map(Vectors.dense).map(Row(_))
val schema = StructType(Array(StructField("name", new VectorUDT, false)))
val dataset = sqlContext.createDataFrame(rowRDD, schema)
dataset.show()
val lda = new LDA()
.setK(10)
.setMaxIter(10)
.setFeaturesCol("name")
val model = lda.fit(dataset)
val transformed = model.transform(dataset)
val ll = model.logLikelihood(dataset)
val lp = model.logPerplexity(dataset)
// describeTopics
val topics = model.describeTopics(3)
// Shows the result
topics.show(false)
transformed.show(false)
}
}
示例2: KMeansClusteringApp
//设置package包名称以及导入依赖的类
package org.apress.prospark
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.mllib.clustering.StreamingKMeans
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.rdd.RDD.doubleRDDToDoubleRDDFunctions
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext
object KMeansClusteringApp {
def main(args: Array[String]) {
if (args.length != 4) {
System.err.println(
"Usage: KMeansClusteringApp <appname> <batchInterval> <hostname> <port>")
System.exit(1)
}
val Seq(appName, batchInterval, hostname, port) = args.toSeq
val conf = new SparkConf()
.setAppName(appName)
.setJars(SparkContext.jarOfClass(this.getClass).toSeq)
val ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))
val substream = ssc.socketTextStream(hostname, port.toInt)
.filter(!_.contains("NaN"))
.map(_.split(" "))
.filter(f => f(1) != "0")
val orientationStream = substream
.map(f => Seq(1, 4, 5, 6, 10, 11, 12, 20, 21, 22, 26, 27, 28, 36, 37, 38, 42, 43, 44).map(i => f(i)).toArray)
.map(arr => arr.map(_.toDouble))
.filter(f => f(0) == 1.0 || f(0) == 2.0 || f(0) == 3.0)
.map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, f.length))))
val test = orientationStream.transform(rdd => rdd.randomSplit(Array(0.3, 0.7))(0))
val train = orientationStream.transformWith(test, (r1: RDD[LabeledPoint], r2: RDD[LabeledPoint]) => r1.subtract(r2)).cache()
val model = new StreamingKMeans()
.setK(3)
.setDecayFactor(0)
.setRandomCenters(18, 0.0)
model.trainOn(train.map(v => v.features))
val prediction = model.predictOnValues(test.map(v => (v.label, v.features)))
ssc.start()
ssc.awaitTermination()
}
}
示例3: Consumer
//设置package包名称以及导入依赖的类
import org.apache.spark.streaming.kafka010.KafkaUtils
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.mllib.classification.SVMModel
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.SparkSession
object Consumer {
def main(args: Array[String]): Unit = {
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "localhost:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "use_a_separate_group_id_for_each_stream",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)
)
val topics = Array("streaming")
val sparkConf = new SparkConf().setMaster("local[8]").setAppName("KafkaTest")
val streamingContext = new StreamingContext(sparkConf, Seconds(1))
// Create a input direct stream
val kafkaStream = KafkaUtils.createDirectStream[String, String](
streamingContext,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
val sc = SparkSession.builder().master("local[8]").appName("KafkaTest").getOrCreate()
val model = SVMModel.load(sc.sparkContext, "/home/xiaoyu/model")
val result = kafkaStream.map(record => (record.key, record.value))
result.foreachRDD(
patient => {
patient.collect().toBuffer.foreach(
(x: (Any, String)) => {
val features = x._2.split(',').map(x => x.toDouble).tail
println(model.predict(Vectors.dense(features)))
}
)
}
)
streamingContext.start()
streamingContext.awaitTermination()
}
}
示例4: KmeansExample
//设置package包名称以及导入依赖的类
import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
import org.apache.spark.mllib.linalg.Vectors
import scala.util.Try
object KmeansExample {
import ApplicationContext._
def main(args: Array[String]) {
val pressureRead = sc.textFile("src/main/resources/PamarcoPressure.txt")
val vibrationText = sc.textFile("src/main/resources/PamarcoVibration.txt")
val pressureRDD = pressureRead.map(_.split(","))
val vibrationRDD = vibrationText.map(_.split("\t")).persist()
val vibrationVector = vibrationRDD.map { row =>
Try(Vectors.dense(row(1).toDouble, row(2).toDouble, row(3).toDouble)).toOption
}.filter(_.isDefined).map(_.get)
val splittedRDD = vibrationVector.randomSplit(Array(0.6, 0.4))
val trainRDD = splittedRDD(0)
val testRDD = splittedRDD(1)
// Cluster the data into two classes using KMeans
val numClusters = 2
val numIterations = 20
val clusters = KMeans.train(trainRDD, numClusters, numIterations)
// Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(vibrationVector)
println("Within Set Sum of Squared Errors = " + WSSSE)
// Save and load model
clusters.save(sc, "target/org/apache/spark/KMeansExample/KMeansModel")
val sameModel = KMeansModel.load(sc, "target/org/apache/spark/KMeansExample/KMeansModel")
import spark.implicits._
val foo = sameModel.predict(testRDD)
foo.toDF.show
sc.stop()
}
}
示例5: KMeansCases
//设置package包名称以及导入依赖的类
import org.apache.spark.SparkContext
import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.log4j.{Level, Logger}
class KMeansCases(sc: SparkContext, dataFile: String, numOfCenters: Int, maxIterations:Int) {
//hide logger from console
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)
val data = sc.textFile(dataFile)
val parsedData = data.map(s => Vectors.dense(s.split('\t').map(_.toDouble))).cache()
def KMeansInitialCenters() = {
val initStartTime = System.nanoTime()
val centers = new KMeansInitialization().run(sc, dataFile, numOfCenters)
val initTimeInSeconds = (System.nanoTime() - initStartTime) / 1e9
println(s"Initialization to find centers took " + "%.3f".format(initTimeInSeconds) + " seconds.")
val initStartTime1 = System.nanoTime()
val model = new KMeansModel(centers)
val clusterModel = new KMeans().setK(numOfCenters).setMaxIterations(maxIterations).setInitialModel(model).run(parsedData)
val initTimeInSeconds1 = (System.nanoTime() - initStartTime1) / 1e9
println(s"Initialization with custom took " + "%.3f".format(initTimeInSeconds1) + " seconds.")
println("\nnumber of points per cluster")
clusterModel.predict(parsedData).map(x=>(x,1)).reduceByKey((a,b)=>a+b).foreach(x=>println(x._2))
}
def KMeansParallel() = {
val initStartTime = System.nanoTime()
val clusterModel = KMeans.train(parsedData, numOfCenters, maxIterations, 1, KMeans.K_MEANS_PARALLEL)
val initTimeInSeconds = (System.nanoTime() - initStartTime) / 1e9
println(s"Initialization with KMeansParaller took " + "%.3f".format(initTimeInSeconds) + " seconds.")
println("number of points per cluster")
clusterModel.predict(parsedData).map(x=>(x,1)).reduceByKey((a,b)=>a+b).foreach(x=>println(x._2))
}
def KMeansRandom() = {
val initStartTime = System.nanoTime()
val clusterModel = KMeans.train(parsedData, numOfCenters, maxIterations, 1, KMeans.RANDOM)
val initTimeInSeconds = (System.nanoTime() - initStartTime) / 1e9
println(s"Initialization with KMeasRandom took " + "%.3f".format(initTimeInSeconds) + " seconds.")
println("number of points per cluster")
clusterModel.predict(parsedData).map(x=>(x,1)).reduceByKey((a,b)=>a+b).foreach(x=>println(x._2))
}
}
示例6: SparkSGD
//设置package包名称以及导入依赖的类
package linalg.sgd
import scala.util.Random
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.optimization.GradientDescent
import org.apache.spark.mllib.optimization.SquaredL2Updater
import org.apache.spark.mllib.optimization.LogisticGradient
import org.apache.spark.SparkContext
object SparkSGD {
def main(args: Array[String]): Unit = {
val m = 4
val n = 200000
val sc = new SparkContext("local[2]", "")
val points = sc.parallelize(0 until m, 2).mapPartitionsWithIndex { (idx, iter) =>
val random = new Random(idx)
iter.map(i => (1.0, Vectors.dense(Array.fill(n)(random.nextDouble()))))
}.cache()
val (weights, loss) = GradientDescent.runMiniBatchSGD(
points,
new LogisticGradient,
new SquaredL2Updater,
0.1,
2,
1.0,
1.0,
Vectors.dense(new Array[Double](n)))
println("w:" + weights(0))
println("loss:" + loss(0))
sc.stop()
}
}
示例7: StandardScalarSample
//设置package包名称以及导入依赖的类
import org.apache.spark.mllib.feature.{StandardScaler, StandardScalerModel}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.{SparkConf, SparkContext}
object StandardScalarSample {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local").setAppName("Word2Vector")
val sc = new SparkContext(conf)
val data = MLUtils.loadLibSVMFile(sc, "/home/ubuntu/work/spark-1.6.0-bin-hadoop2.6/data/mllib/sample_libsvm_data.txt")
val scaler1 = new StandardScaler().fit(data.map(x => x.features))
val scaler2 = new StandardScaler(withMean = true, withStd = true).fit(data.map(x => x.features))
// scaler3 is an identical model to scaler2, and will produce identical transformations
val scaler3 = new StandardScalerModel(scaler2.std, scaler2.mean)
// data1 will be unit variance.
val data1 = data.map(x => (x.label, scaler1.transform(x.features)))
println(data1.first())
// Without converting the features into dense vectors, transformation with zero mean will raise
// exception on sparse vector.
// data2 will be unit variance and zero mean.
val data2 = data.map(x => (x.label, scaler2.transform(Vectors.dense(x.features.toArray))))
println(data2.first())
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:28,代码来源:StandardScalarSample.scala
示例8: SVMPipeline
//设置package包名称以及导入依赖的类
package org.stumbleuponclassifier
import org.apache.log4j.Logger
import org.apache.spark.SparkContext
import org.apache.spark.mllib.classification.SVMWithSGD
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
object SVMPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def svmPipeline(sc: SparkContext) = {
val records = sc.textFile("/home/ubuntu/work/ml-resources/spark-ml/train_noheader.tsv").map(line => line.split("\t"))
val data = records.map { r =>
val trimmed = r.map(_.replaceAll("\"", ""))
val label = trimmed(r.size - 1).toInt
val features = trimmed.slice(4, r.size - 1).map(d => if (d == "?") 0.0 else d.toDouble)
LabeledPoint(label, Vectors.dense(features))
}
// params for SVM
val numIterations = 10
// Run training algorithm to build the model
val svmModel = SVMWithSGD.train(data, numIterations)
// Clear the default threshold.
svmModel.clearThreshold()
val svmTotalCorrect = data.map { point =>
if(svmModel.predict(point.features) == point.label) 1 else 0
}.sum()
// calculate accuracy
val svmAccuracy = svmTotalCorrect / data.count()
println(svmAccuracy)
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:42,代码来源:SVMPipeline.scala
示例9: PCAClustering
//设置package包名称以及导入依赖的类
package graph
import org.apache.spark.SparkContext
import org.apache.spark.graphx.{EdgeDirection, Edge, Graph}
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.{DenseVector, Vector, Matrix, Vectors}
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.rdd.RDD
import scala.collection.mutable
class PCAClustering {
def matrixToRDD(sc:SparkContext, m: Matrix): RDD[Vector] = {
val columns = m.toArray.grouped(m.numRows)
val rows = columns.toSeq.transpose // Skip this if you want a column-major RDD.
val vectors = rows.map(row => new DenseVector(row.toArray))
sc.parallelize(vectors)
}
def run(inputGraph: Graph[Any, Any], clusterNum: Int, eigsNum: Int,sc:SparkContext ): Graph[Int, Any] = {
val numNode = inputGraph.numVertices.toInt
val mapping = new mutable.HashMap[Long,Int]()
val revMapping = new mutable.HashMap[Int, Long]()
val verticeIds = inputGraph.vertices.map( u => u._1 ).collect()
for(i<-0 to numNode - 1) {
mapping.put(verticeIds.apply(i), i)
revMapping.put(i, verticeIds.apply(i))
}
//reindex the verteces from 0 to the num of nodes
val nVertices = inputGraph.vertices.map( u=> (mapping.apply(u._1).toLong, u._2))
val nEdges = inputGraph.edges.map(e=> Edge(mapping.apply(e.srcId).toLong, mapping.apply(e.dstId).toLong, e.attr))
val ngraph = Graph(nVertices, nEdges)
val output = ngraph.collectNeighborIds(EdgeDirection.Out)
val spvec = output.mapValues(r => Vectors.sparse( numNode, r.map(e=>e.toInt) , r.map(e=> 1.0/r.length )))
val rows = spvec.map(v=>v._2)
val order = spvec.map(v=>v._1)
val mat = new RowMatrix(rows)
val pc = mat.computePrincipalComponents(eigsNum)
val pcRDD = matrixToRDD(sc, pc)
val clusters = KMeans.train(pcRDD, clusterNum, 100)
val clusterArray = pcRDD.map(p=> clusters.predict(p) ).collect()
val assignedClusters = order.map( o => (o, clusterArray.apply(o.toInt)))
val origVerextRDD = assignedClusters.map{case (vid, value)=> (revMapping.apply(vid.toInt), value)}
Graph(origVerextRDD, inputGraph.edges)
}
}
示例10: SimpleApp
//设置package包名称以及导入依赖的类
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.mllib.linalg.{Vector, Vectors}
object SimpleApp {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Simple Application")
val sc = new SparkContext(conf)
val data = Array(1,2,3)
val distData = sc.parallelize(data)
val vectorData = distData.map(x => Vectors.dense(x))
val summary = Statistics.colStats(vectorData)
println("mean is: %s".format(summary.mean))
println("max is: %s".format(summary.max))
println("min is: %s".format(summary.min))
//find correlation
// student, exam1, exam2, exam3
val data = sc.parallelize(Array("111, 60, 65, 73", "222, 98,95,88", "333, 56,67,62"))
val vectorRdd = data.map((line: String) => line.split(",").drop(1).map((ele: String) => ele.toDouble)).map(Vectors.dense)
val corrMatrix = Statistics.corr(vectorRdd)
}
}
示例11: VT_sample_label_rdd_class
//设置package包名称以及导入依赖的类
import org.apache.spark.mllib.feature.PCA
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.clustering.KMeans
import PreProcessingConfig._
case class VT_sample_label_rdd_class(sha256:String, label:Double)
val VT_sample_signatures_final_array_rdd = spark.read.format("parquet").load(VT_sample_signatures_final_array_file).rdd.map(row => new VT_sample_signatures_final_array_rdd_class(row(0).toString,row(1).asInstanceOf[Seq[Double]].toArray))
val VT_sample_signatures_with_sha_rddvector = VT_sample_signatures_final_array_rdd.map(x=>(x.sha256,Vectors.dense(x.array_results)))
val VT_sample_signatures_rddvector = VT_sample_signatures_with_sha_rddvector.map(x=>x._2)
val pca = new PCA(2).fit(VT_sample_signatures_rddvector)
val VT_sample_pca_with_sha_rddvector = VT_sample_signatures_with_sha_rddvector.map(x => (x._1,pca.transform(x._2)))
val VT_sample_pca_rddvector = (VT_sample_pca_with_sha_rddvector.map(x=>x._2)).cache()
val KMeans_Model = KMeans.train(VT_sample_pca_rddvector,5,5,1)
val VT_sample_pca_label_with_sha_rdd = VT_sample_pca_with_sha_rddvector.map(x=>(x._1,(x._2.toArray(0),x._2.toArray(1),KMeans_Model.predict(x._2))))
val VT_sample_label_rdd = VT_sample_pca_label_with_sha_rdd.map(x=>new VT_sample_label_rdd_class(x._1,x._2._3.toDouble))
VT_sample_label_rdd.toDF().write.format("parquet").save(VT_sample_label_file)
示例12: Event
//设置package包名称以及导入依赖的类
package fraud.main
import org.apache.spark.mllib.linalg.Vectors
import spray.json.DefaultJsonProtocol
import java.util.UUID._
case class Event(id: String, user: String, item: String, action: String, timestamp: String)
object EventJsonProtocol extends DefaultJsonProtocol {
implicit val EventFormat = jsonFormat5(Event)
}
object Domain {
val items = Seq("Toy Banner", "Suit Banner", "Skirt Banner")
val itemIds = Map(items(0) -> 0, items(1) -> 1, items(2) -> 2)
val actions = Seq("Click", "View", "Loaded")
val users = Seq("Billy", "John", "Mary")
val userIds = Map(users(0) -> 0, users(1) -> 1, users(2) -> 2)
def features(e: Event) = Vectors.dense(itemId(e), userId(e))
def itemId(e: Event): Int = itemIds(e.item)
def userId(e: Event): Int = userIds(e.user)
}
object RandomEvent {
val rnd = new scala.util.Random()
def randomFraudEvent() = Event(randomUUID.toString, Domain.users(0).toString, Domain.items(1), Domain.actions(0), timestamp)
//Constructs a random events
def apply(): Event = Event(randomUUID.toString, randomUser, randomItem, randomAction, timestamp)
def randomItem() = Domain.items(rnd.nextInt(Domain.items.size))
def randomUser() = Domain.users(rnd.nextInt(Domain.users.size))
def randomAction() = Domain.actions(rnd.nextInt(Domain.actions.size))
def timestamp() = new java.util.Date().toString()
}
示例13: irisFeatureColumn
//设置package包名称以及导入依赖的类
package ca.jakegreene.iris
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.DataFrame
import org.apache.spark.mllib.linalg.Vectors
trait DataLoader {
def irisFeatureColumn = "iris-features"
def irisTypeColumn = "iris-type"
def loadIris(filePath: String)(implicit sqlContext: SQLContext): DataFrame = {
val irisData = sqlContext.sparkContext.textFile(filePath).flatMap { text =>
text.split("\n").toList.map(_.split(",")).collect {
case Array(sepalLength, sepalWidth, petalLength, petalWidth, irisType) =>
(Vectors.dense(sepalLength.toDouble, sepalWidth.toDouble, petalLength.toDouble, petalWidth.toDouble), irisType)
}
}
sqlContext.createDataFrame(irisData).toDF(irisFeatureColumn, irisTypeColumn)
}
}
示例14: KMeansExample
//设置package包名称以及导入依赖的类
package com.learn.spark.mllib
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.{SparkContext, SparkConf}
object KMeansExample {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local[4]").setAppName(s"Kmeans example").set("spark.driver.host", "localhost")
val sc = new SparkContext(conf)
val rawData = sc.textFile("/Users/xiaojie/Downloads/kddcup.data")
val labelsAndData = rawData.map { line =>
val buffer = line.split(",").toBuffer
buffer.remove(1, 3)
val label = buffer.remove(buffer.length - 1)
val vector = Vectors.dense(buffer.map(_.toDouble).toArray)
(label, vector)
}
val data = labelsAndData.values.cache
val kmeans = new KMeans()
val model = kmeans.run(data)
model.clusterCenters.foreach(println)
}
}
示例15: Utils
//设置package包名称以及导入依赖的类
package com.github.aadamson.spark_glove
import org.apache.spark.{SparkConf, SparkContext};
import org.apache.spark.mllib.linalg.{Vector, Vectors, Matrix, Matrices, DenseMatrix};
import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, BlockMatrix, RowMatrix, MatrixEntry, IndexedRow, IndexedRowMatrix};
import org.apache.spark.rdd.RDD;
object Utils {
type CoordinateRDD[T] = RDD[((Long, Long), T)];
implicit def CoordinateRDD2CoordinateMatrix(a: CoordinateRDD[Float]): CoordinateMatrix = {
val entries: RDD[MatrixEntry] = a.map { case ((i, j), value) => new MatrixEntry(i, j, value) };
val mat: CoordinateMatrix = new CoordinateMatrix(entries);
return mat;
}
def broadcastVector(v: Vector, numRows: Int, sc: SparkContext): IndexedRowMatrix = {
val rows: RDD[IndexedRow] = sc.parallelize(0 to numRows-1).map(i => new IndexedRow(i, v));
val mat: IndexedRowMatrix = new IndexedRowMatrix(rows);
return mat;
}
def elementwiseProduct[T](a: T, b: T): T = (a, b) match {
case (x: BlockMatrix, y: BlockMatrix) => {
val aIRM = x.toIndexedRowMatrix();
val bIRM = y.toIndexedRowMatrix();
val rows = aIRM.rows.zip(bIRM.rows).map {
case (aRow: IndexedRow, bRow: IndexedRow) => new IndexedRow(aRow.index, elementwiseProduct(aRow.vector, bRow.vector));
}
return (new IndexedRowMatrix(rows)).toBlockMatrix().asInstanceOf[T];
}
case (x: Vector, y: Vector) => {
val values = Array(x.toArray, y.toArray);
return Vectors.dense(values.transpose.map(_.sum)).asInstanceOf[T];;
}
}
}