当前位置: 首页>>代码示例>>Scala>>正文


Scala SingularValueDecomposition类代码示例

本文整理汇总了Scala中org.apache.spark.mllib.linalg.SingularValueDecomposition的典型用法代码示例。如果您正苦于以下问题:Scala SingularValueDecomposition类的具体用法?Scala SingularValueDecomposition怎么用?Scala SingularValueDecomposition使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了SingularValueDecomposition类的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: SparkSVDExampleOne

//设置package包名称以及导入依赖的类
package linalg.svd

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.mllib.linalg.{Matrix, SingularValueDecomposition, Vector, Vectors}
object SparkSVDExampleOne {

  def main(args: Array[String]) {
    val denseData = Seq(
      Vectors.dense(0.0, 1.0, 2.0, 1.0, 5.0, 3.3, 2.1),
      Vectors.dense(3.0, 4.0, 5.0, 3.1, 4.5, 5.1, 3.3),
      Vectors.dense(6.0, 7.0, 8.0, 2.1, 6.0, 6.7, 6.8),
      Vectors.dense(9.0, 0.0, 1.0, 3.4, 4.3, 1.0, 1.0)
    )
    val spConfig = (new SparkConf).setMaster("local").setAppName("SparkSVDDemo")
    val sc = new SparkContext(spConfig)
    val mat: RowMatrix = new RowMatrix(sc.parallelize(denseData, 2))

    // Compute the top 20 singular values and corresponding singular vectors.
    val svd: SingularValueDecomposition[RowMatrix, Matrix] = mat.computeSVD(7, computeU = true)
    val U: RowMatrix = svd.U // The U factor is a RowMatrix.
    val s: Vector = svd.s // The singular values are stored in a local dense vector.
    val V: Matrix = svd.V // The V factor is a local dense matrix.
    println("U:" + U)
    println("s:" + s)
    println("V:" + V)
    sc.stop()
  }
} 
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:30,代码来源:SparkSVDExampleOne.scala


注:本文中的org.apache.spark.mllib.linalg.SingularValueDecomposition类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。