当前位置: 首页>>代码示例>>Scala>>正文


Scala StandardScalerModel类代码示例

本文整理汇总了Scala中org.apache.spark.mllib.feature.StandardScalerModel的典型用法代码示例。如果您正苦于以下问题:Scala StandardScalerModel类的具体用法?Scala StandardScalerModel怎么用?Scala StandardScalerModel使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了StandardScalerModel类的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: StandardScalarSample

//设置package包名称以及导入依赖的类
import org.apache.spark.mllib.feature.{StandardScaler, StandardScalerModel}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.{SparkConf, SparkContext}

object StandardScalarSample {
  def main(args: Array[String]) {
    val conf = new SparkConf().setMaster("local").setAppName("Word2Vector")
    val sc = new SparkContext(conf)
    val data = MLUtils.loadLibSVMFile(sc, "/home/ubuntu/work/spark-1.6.0-bin-hadoop2.6/data/mllib/sample_libsvm_data.txt")

    val scaler1 = new StandardScaler().fit(data.map(x => x.features))
    val scaler2 = new StandardScaler(withMean = true, withStd = true).fit(data.map(x => x.features))
    // scaler3 is an identical model to scaler2, and will produce identical transformations
    val scaler3 = new StandardScalerModel(scaler2.std, scaler2.mean)

    // data1 will be unit variance.
    val data1 = data.map(x => (x.label, scaler1.transform(x.features)))
    println(data1.first())

    // Without converting the features into dense vectors, transformation with zero mean will raise
    // exception on sparse vector.
    // data2 will be unit variance and zero mean.
    val data2 = data.map(x => (x.label, scaler2.transform(Vectors.dense(x.features.toArray))))
    println(data2.first())
  }
} 
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:28,代码来源:StandardScalarSample.scala

示例2: StandardScalarSample

//设置package包名称以及导入依赖的类
import org.apache.spark.mllib.feature.{StandardScaler, StandardScalerModel}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.{SparkConf, SparkContext}

object StandardScalarSample {
  def main(args: Array[String]) {
    val conf = new SparkConf().setMaster("local").setAppName("Word2Vector")
    val sc = new SparkContext(conf)
    val data = MLUtils.loadLibSVMFile(sc,
      org.sparksamples.Util.SPARK_HOME +  "/data/mllib/sample_libsvm_data.txt")

    val scaler1 = new StandardScaler().fit(data.map(x => x.features))
    val scaler2 = new StandardScaler(withMean = true, withStd = true).fit(data.map(x => x.features))
    // scaler3 is an identical model to scaler2, and will produce identical transformations
    val scaler3 = new StandardScalerModel(scaler2.std, scaler2.mean)

    // data1 will be unit variance.
    val data1 = data.map(x => (x.label, scaler1.transform(x.features)))
    println(data1.first())

    // Without converting the features into dense vectors, transformation with zero mean will raise
    // exception on sparse vector.
    // data2 will be unit variance and zero mean.
    val data2 = data.map(x => (x.label, scaler2.transform(Vectors.dense(x.features.toArray))))
    println(data2.first())
  }
} 
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:29,代码来源:StandardScalarSample.scala


注:本文中的org.apache.spark.mllib.feature.StandardScalerModel类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。