当前位置: 首页>>代码示例>>Scala>>正文


Scala StreamingLogisticRegressionWithSGD类代码示例

本文整理汇总了Scala中org.apache.spark.mllib.classification.StreamingLogisticRegressionWithSGD的典型用法代码示例。如果您正苦于以下问题:Scala StreamingLogisticRegressionWithSGD类的具体用法?Scala StreamingLogisticRegressionWithSGD怎么用?Scala StreamingLogisticRegressionWithSGD使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了StreamingLogisticRegressionWithSGD类的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: LogisticRegressionApp

//设置package包名称以及导入依赖的类
package org.apress.prospark

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.regression.StreamingLinearRegressionWithSGD
import org.apache.spark.rdd.RDD
import org.apache.spark.rdd.RDD.doubleRDDToDoubleRDDFunctions
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.mllib.classification.StreamingLogisticRegressionWithSGD

object LogisticRegressionApp {

  def main(args: Array[String]) {
    if (args.length != 4) {
      System.err.println(
        "Usage: LogisticRegressionApp <appname> <batchInterval> <hostname> <port>")
      System.exit(1)
    }
    val Seq(appName, batchInterval, hostname, port) = args.toSeq

    val conf = new SparkConf()
      .setAppName(appName)
      .setJars(SparkContext.jarOfClass(this.getClass).toSeq)

    val ssc = new StreamingContext(conf, Seconds(batchInterval.toInt))

    val substream = ssc.socketTextStream(hostname, port.toInt)
      .filter(!_.contains("NaN"))
      .map(_.split(" "))
      .filter(f => f(1) != "0")

    val datastream = substream.map(f => Array(f(1).toDouble, f(2).toDouble, f(4).toDouble, f(5).toDouble, f(6).toDouble))

    val walkingOrRunning = datastream.filter(f => f(0) == 4.0 || f(0) == 5.0).map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, 5))))
    val test = walkingOrRunning.transform(rdd => rdd.randomSplit(Array(0.3, 0.7))(0))
    val train = walkingOrRunning.transformWith(test, (r1: RDD[LabeledPoint], r2: RDD[LabeledPoint]) => r1.subtract(r2)).cache()
    val model = new StreamingLogisticRegressionWithSGD()
      .setInitialWeights(Vectors.zeros(4))
      .setStepSize(0.0001)
      .setNumIterations(1)

    model.trainOn(train)
    model.predictOnValues(test.map(v => (v.label, v.features))).foreachRDD(rdd => println("MSE: %f".format(rdd
      .map(v => math.pow((v._1 - v._2), 2)).mean())))

    ssc.start()
    ssc.awaitTermination()
  }

} 
开发者ID:ZubairNabi,项目名称:prosparkstreaming,代码行数:54,代码来源:L9-9LogisticRegression.scala


注:本文中的org.apache.spark.mllib.classification.StreamingLogisticRegressionWithSGD类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。