当前位置: 首页>>代码示例>>Scala>>正文


Scala SVMModel类代码示例

本文整理汇总了Scala中org.apache.spark.mllib.classification.SVMModel的典型用法代码示例。如果您正苦于以下问题:Scala SVMModel类的具体用法?Scala SVMModel怎么用?Scala SVMModel使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了SVMModel类的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: Consumer

//设置package包名称以及导入依赖的类
import org.apache.spark.streaming.kafka010.KafkaUtils
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.mllib.classification.SVMModel
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.SparkSession

object Consumer {

  def main(args: Array[String]): Unit = {

    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "localhost:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "use_a_separate_group_id_for_each_stream",
      "auto.offset.reset" -> "latest",
      "enable.auto.commit" -> (false: java.lang.Boolean)
    )

    val topics = Array("streaming")

    val sparkConf = new SparkConf().setMaster("local[8]").setAppName("KafkaTest")
    val streamingContext = new StreamingContext(sparkConf, Seconds(1))
    // Create a input direct stream
    val kafkaStream = KafkaUtils.createDirectStream[String, String](
      streamingContext,
      PreferConsistent,
      Subscribe[String, String](topics, kafkaParams)
    )

    val sc = SparkSession.builder().master("local[8]").appName("KafkaTest").getOrCreate()
    val model = SVMModel.load(sc.sparkContext, "/home/xiaoyu/model")
    val result = kafkaStream.map(record => (record.key, record.value))
    result.foreachRDD(
      patient => {
        patient.collect().toBuffer.foreach(
          (x: (Any, String)) => {
            val features = x._2.split(',').map(x => x.toDouble).tail
            println(model.predict(Vectors.dense(features)))

          }
        )
      }
    )

    streamingContext.start()
    streamingContext.awaitTermination()

  }
} 
开发者ID:XiaoyuGuo,项目名称:DataFusionClass,代码行数:55,代码来源:Consumer.scala


注:本文中的org.apache.spark.mllib.classification.SVMModel类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。