当前位置: 首页>>代码示例>>Scala>>正文


Scala LogisticRegressionWithLBFGS类代码示例

本文整理汇总了Scala中org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS的典型用法代码示例。如果您正苦于以下问题:Scala LogisticRegressionWithLBFGS类的具体用法?Scala LogisticRegressionWithLBFGS怎么用?Scala LogisticRegressionWithLBFGS使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了LogisticRegressionWithLBFGS类的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: MllibLBFGS

//设置package包名称以及导入依赖的类
package optimizers

import breeze.linalg.{DenseVector, Vector}
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
import org.apache.spark.mllib.optimization.{L1Updater, SimpleUpdater, SquaredL2Updater, Updater}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import utils.Functions._


class MllibLBFGS(val data: RDD[LabeledPoint],
                 loss: LossFunction,
                 regularizer: Regularizer,
                 params: LBFGSParameters
                ) extends Optimizer(loss, regularizer) {

  val opt = new LogisticRegressionWithLBFGS

  val reg: Updater = (regularizer: Regularizer) match {
    case _: L1Regularizer => new L1Updater
    case _: L2Regularizer => new SquaredL2Updater
    case _: Unregularized => new SimpleUpdater
  }

  opt.optimizer.
    setNumIterations(params.iterations).
    setConvergenceTol(params.convergenceTol).
    setNumCorrections(params.numCorrections).
    setRegParam(regularizer.lambda).
    setUpdater(reg)

  override def optimize(): Vector[Double] = {
    val model = opt.run(data)
    val w = model.weights.toArray
    return DenseVector(w)
  }
} 
开发者ID:mlbench,项目名称:mlbench,代码行数:38,代码来源:MllibLBFGS.scala

示例2: LogisticRegressionTest

//设置package包名称以及导入依赖的类
package cn.edu.bjtu


import org.apache.spark.SparkConf
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.sql.SparkSession

object LogisticRegressionTest {
  def main(args: Array[String]): Unit = {

    val sparkConf = new SparkConf()
      .setAppName("LogisticRegressionTest")
      .setMaster("spark://master:7077")
      .setJars(Array("/home/hadoop/LogisticRegression.jar"))

    val spark = SparkSession.builder()
      .config(sparkConf)
      .getOrCreate()

    spark.sparkContext.setLogLevel("WARN")

    val data = MLUtils.loadLibSVMFile(spark.sparkContext, "hdfs://master:9000/sample_formatted.txt")

    val splits = data.randomSplit(Array(0.7, 0.3), seed = 11L)
    val training = splits(0).cache()
    val test = splits(1)

    // Run training algorithm to build the model
    val model = new LogisticRegressionWithLBFGS()
      .setNumClasses(2)
      .run(training)

    // Compute raw scores on the test set.
    val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
      val prediction = model.predict(features)
      (prediction, label)
    }

    // Get evaluation metrics.
    val metrics = new BinaryClassificationMetrics(predictionAndLabels)
    val auROC = metrics.areaUnderROC()
    println("Area under ROC = " + auROC)
    println("Sensitivity = " + predictionAndLabels.filter(x => x._1 == x._2 && x._1 == 1.0).count().toDouble / predictionAndLabels.filter(x => x._2 == 1.0).count().toDouble)
    println("Specificity = " + predictionAndLabels.filter(x => x._1 == x._2 && x._1 == 0.0).count().toDouble / predictionAndLabels.filter(x => x._2 == 0.0).count().toDouble)
    println("Accuracy = " + predictionAndLabels.filter(x => x._1 == x._2).count().toDouble / predictionAndLabels.count().toDouble)
  }
} 
开发者ID:XiaoyuGuo,项目名称:DataFusionClass,代码行数:51,代码来源:LogisticRegressionTest.scala

示例3: LRAccuracyTest

//设置package包名称以及导入依赖的类
package MLlib

import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.classification.{LogisticRegressionWithLBFGS, LogisticRegressionModel, SparseLogisticRegressionWithLBFGS}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.{SparkContext, SparkConf}


object LRAccuracyTest {

  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName(s"LogisticRegressionTest with $args").setMaster("local")
    val sc = new SparkContext(conf)

    Logger.getRootLogger.setLevel(Level.WARN)
    val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").map(
      l => LabeledPoint(l.label, l.features.toSparse))

    // Split data into training (60%) and test (40%).
    val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
    val training = splits(0).cache()
    val test = splits(1)

    // Run training algorithm to build the model
    val model = new SparseLogisticRegressionWithLBFGS()
      .setNumClasses(5)
      .run(training)

    // Compute raw scores on the test set.
    val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
      val prediction = model.predict(features)
      (prediction, label)
    }

    // Get evaluation metrics.
    val metrics = new MulticlassMetrics(predictionAndLabels)

    val precision = metrics.precision
    println("Precision = " + precision)


  }

} 
开发者ID:intel-analytics,项目名称:SparseML,代码行数:47,代码来源:LRAccuracyTest.scala


注:本文中的org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。