当前位置: 首页>>代码示例>>Scala>>正文


Scala RandomForestRegressor类代码示例

本文整理汇总了Scala中org.apache.spark.ml.regression.RandomForestRegressor的典型用法代码示例。如果您正苦于以下问题:Scala RandomForestRegressor类的具体用法?Scala RandomForestRegressor怎么用?Scala RandomForestRegressor使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了RandomForestRegressor类的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: SitelinkEntry

//设置package包名称以及导入依赖的类
package org.wikimedia.research.recommendation.job.translation

import org.apache.spark.ml.evaluation.RegressionEvaluator
import org.apache.spark.ml.linalg.DenseVector
import org.apache.spark.ml.regression.RandomForestRegressor
import org.apache.spark.sql.{DataFrame, SparkSession}

case class SitelinkEntry(id: String, site: String, title: String)

case class PagecountEntry(site: String, title: String, pageviews: Double)

case class SitelinkPageviewsEntry(id: String, site: String, title: String, pageviews: Double)

case class RankedEntry(id: String, site: String, title: String, pageviews: Double, rank: Double)

object Utils {
  val FEATURES = "features"
  val LABEL = "label"
  val PREDICTION = "prediction"
  val EXISTS = 1.0
  val NOT_EXISTS = 0.0
  val REGRESSOR: RandomForestRegressor = new RandomForestRegressor()
    .setLabelCol(LABEL)
    .setFeaturesCol(FEATURES)
  val EVALUATOR: RegressionEvaluator = new RegressionEvaluator()
    .setLabelCol(LABEL)
    .setPredictionCol(PREDICTION)
    .setMetricName("rmse")

  def getWorkData(spark: SparkSession, data: DataFrame, target: String, exists: Boolean = true): DataFrame = {
    val workData: DataFrame = data.filter(row =>
      row(row.fieldIndex("exists_" + target)) == (if (exists) EXISTS else NOT_EXISTS))

    import spark.implicits._
    val labeledData = workData.map(row =>
      (
        row.getString(row.fieldIndex("id")),
        row.getDouble(row.fieldIndex("rank_" + target)),
        
        new DenseVector((
          (1 until row.fieldIndex("pageviews_" + target)).map(row.getDouble) ++
            (row.fieldIndex("exists_" + target) + 1 until row.length).map(row.getDouble)
          ).toArray)
      )
    ).rdd

    spark.createDataFrame(labeledData).toDF("id", LABEL, FEATURES)
  }
} 
开发者ID:schana,项目名称:recommendation-translation,代码行数:50,代码来源:Utils.scala


注:本文中的org.apache.spark.ml.regression.RandomForestRegressor类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。