本文整理汇总了Scala中org.apache.spark.ml.recommendation.ALS类的典型用法代码示例。如果您正苦于以下问题:Scala ALS类的具体用法?Scala ALS怎么用?Scala ALS使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ALS类的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: ALSModeling
//设置package包名称以及导入依赖的类
package com.spark.recommendation
import java.util
import com.spark.recommendation.FeatureExtraction.{Rating, parseRating}
import org.apache.spark.ml.evaluation.RegressionEvaluator
import org.apache.spark.ml.recommendation.ALS
import org.apache.spark.sql.{Row, DataFrame, DataFrameWriter}
object ALSModeling {
def createALSModel() {
val ratings = FeatureExtraction.getFeatures();
val Array(training, test) = ratings.randomSplit(Array(0.8, 0.2))
println(training.first())
// Build the recommendation model using ALS on the training data
val als = new ALS()
.setMaxIter(5)
.setRegParam(0.01)
.setUserCol("userId")
.setItemCol("movieId")
.setRatingCol("rating")
val model = als.fit(training)
println(model.userFactors.count())
println(model.itemFactors.count())
val predictions = model.transform(test)
println(predictions.printSchema())
val evaluator = new RegressionEvaluator()
.setMetricName("rmse")
.setLabelCol("rating")
.setPredictionCol("prediction")
val rmse = evaluator.evaluate(predictions)
println(s"Root-mean-square error = $rmse")
}
def main(args: Array[String]) {
createALSModel()
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:48,代码来源:ALSModeling.scala