当前位置: 首页>>代码示例>>Scala>>正文


Scala Word2Vec类代码示例

本文整理汇总了Scala中org.apache.spark.ml.feature.Word2Vec的典型用法代码示例。如果您正苦于以下问题:Scala Word2Vec类的具体用法?Scala Word2Vec怎么用?Scala Word2Vec使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了Word2Vec类的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: model

//设置package包名称以及导入依赖的类
package net.koseburak.recommendation.model

import net.koseburak.recommendation.config.AppConfig._
import net.koseburak.recommendation.constant.Field.{PlaylistField, PlaylistResultField}
import net.koseburak.recommendation.util.DataUtils
import org.apache.spark.ml.feature.Word2Vec
import org.apache.spark.sql.SparkSession

trait Generator {
  def model: PlaylistModel
}

case class PlaylistGenerator(vectorSize: Int = 50, windowSize: Int = 125)
                            (implicit spark: SparkSession) extends Generator {
  private val trainDF = DataUtils.prepareData(trainCompletePath)
  override val model: PlaylistModel = {
    val model = new Word2Vec()
      .setMinCount(1)
      .setVectorSize(vectorSize)
      .setWindowSize(windowSize)
      .setInputCol(PlaylistField)
      .setOutputCol(PlaylistResultField)
    PlaylistModel(model.fit(trainDF), vectorSize, windowSize)
  }
} 
开发者ID:burakkose,项目名称:word2vec-playlist-generation,代码行数:26,代码来源:PlaylistGenerator.scala

示例2: Word2VecMl

//设置package包名称以及导入依赖的类
import org.apache.spark.{SparkConf}
import org.apache.spark.ml.feature.Word2Vec
import org.apache.spark.sql.SparkSession

object Word2VecMl {
  case class Record(name: String)

  def main(args: Array[String]) {
    val spConfig = (new SparkConf).setMaster("local").setAppName("SparkApp")
    val spark = SparkSession
      .builder
      .appName("Word2Vec Sample").config(spConfig)
      .getOrCreate()

    import spark.implicits._

    val rawDF = spark.sparkContext
      .wholeTextFiles("./data/20news-bydate-train/alt.atheism/*")

    val temp = rawDF.map( x => {
      (x._2.filter(_ >= ' ').filter(! _.toString.startsWith("(")) )
    })

    val textDF = temp.map(x => x.split(" ")).map(Tuple1.apply)
      .toDF("text")
    print(textDF.first())
    val word2Vec = new Word2Vec()
      .setInputCol("text")
      .setOutputCol("result")
      .setVectorSize(3)
      .setMinCount(0)
    val model = word2Vec.fit(textDF)
    val result = model.transform(textDF)
    result.select("result").take(3).foreach(println)
    val ds = model.findSynonyms("philosophers", 5).select("word")
    ds.rdd.saveAsTextFile("./output/alien-synonyms" +  System.nanoTime())
    ds.show()
    spark.stop()
  }
} 
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:41,代码来源:Word2VecMl.scala

示例3: Word2VecExample

//设置package包名称以及导入依赖的类
import org.apache.spark.SparkConf
import org.apache.spark.ml.feature.Word2Vec
// $example off$
import org.apache.spark.sql.SparkSession

object Word2VecExample {
  def main(args: Array[String]) {
    val spConfig = (new SparkConf).setMaster("local").setAppName("SparkApp")
    val spark = SparkSession
      .builder
      .appName("Word2Vec example").config(spConfig)
      .getOrCreate()

    val documentDF1 = spark.createDataFrame(Seq(
      "Hi I heard about Spark".split(" "),
      "I wish Java could use case classes".split(" "),
      "Logistic regression models are neat".split(" ")
    ).map(Tuple1.apply))
    documentDF1.show(1)

    val documentDF = spark.createDataFrame(Seq(
      "Hi I heard about Spark".split(" "),
      "I wish Java could use case classes".split(" "),
      "Logistic regression models are neat".split(" ")
    ).map(Tuple1.apply)).toDF("text")


    // Learn a mapping from words to Vectors.
    val word2Vec = new Word2Vec()
      .setInputCol("text")
      .setOutputCol("result")
      .setVectorSize(3)
      .setMinCount(0)
    val model = word2Vec.fit(documentDF)
    val result = model.transform(documentDF)
    result.select("result").take(3).foreach(println)
    // $example off$

    spark.stop()
  }
}
// scalastyle:on println 
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:43,代码来源:Word2VecExample.scala

示例4: Word2Vec

//设置package包名称以及导入依赖的类
package com.lhcg.ml

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
import org.apache.spark.ml.feature.Word2Vec


object Word2Vec {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("Word2Vec")
    //      .setMaster("local[2]")
    val spark = new SparkContext(conf)
    val sqlContext = new SQLContext(spark)

    // Input data: Each row is a bag of words from a sentence or document.
    val documentDF = sqlContext.createDataFrame(Seq(
      "Hi I heard about Spark".split(" "),
      "I wish Java could use case classes".split(" "),
      "Logistic regression models are neat".split(" ")
    ).map(Tuple1.apply)).toDF("text")

    // Learn a mapping from words to Vectors.
    val word2Vec = new Word2Vec()
      .setInputCol("text")
      .setOutputCol("result")
      .setVectorSize(3)
      .setMinCount(0)
    val model = word2Vec.fit(documentDF)
    val result = model.transform(documentDF)
    result.select("result").take(3).foreach(println)
  }
} 
开发者ID:lhcg,项目名称:lovespark,代码行数:33,代码来源:Word2Vec.scala

示例5: Word2VecJob

//设置package包名称以及导入依赖的类
import java.util

import org.apache.spark.ml.feature.Word2Vec
import org.apache.spark.mllib.linalg.{Vector => LVector}
import io.hydrosphere.mist.api._
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.Pipeline
import org.apache.spark.sql.SparkSession

object Word2VecJob extends MLMistJob {
  def session: SparkSession = SparkSession
    .builder()
    .appName(context.appName)
    .config(context.getConf)
    .getOrCreate()

  def train(savePath: String): Map[String, Any] = {
    val documentDF = session.createDataFrame(Seq(
      "Hi I heard about Spark".split(" "),
      "I wish Java could use case classes".split(" "),
      "Logistic regression models are neat".split(" ")
    ).map(Tuple1.apply)).toDF("text")

    // Learn a mapping from words to Vectors.
    val word2Vec = new Word2Vec()
      .setInputCol("text")
      .setOutputCol("result")
      .setVectorSize(3)
      .setMinCount(0)
    val pipeline = new Pipeline().setStages(Array(word2Vec))

    val model = pipeline.fit(documentDF)

    model.write.overwrite().save(savePath)
    Map.empty
  }

  def serve(modelPath: String, features: List[String]): Map[String, Any] = {
    import LocalPipelineModel._

    val pipeline = PipelineLoader.load(modelPath)
    val data = LocalData(LocalDataColumn("text", features))
    val result = pipeline.transform(data)

    val response = result.select("result").toMapList.map(rowMap => {
      val mapped = rowMap("result").asInstanceOf[LVector].toArray
      rowMap + ("result" -> mapped)
    })

    Map("result" -> response)
  }
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:53,代码来源:Word2VecJob.scala


注:本文中的org.apache.spark.ml.feature.Word2Vec类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。