本文整理汇总了Scala中org.apache.spark.ml.feature.VectorIndexer类的典型用法代码示例。如果您正苦于以下问题:Scala VectorIndexer类的具体用法?Scala VectorIndexer怎么用?Scala VectorIndexer使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了VectorIndexer类的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: LinearRegressionPipeline
//设置package包名称以及导入依赖的类
package org.sparksamples.regression.bikesharing
import org.apache.log4j.Logger
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{VectorAssembler, VectorIndexer}
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.mllib.evaluation.RegressionMetrics
import org.apache.spark.sql.{DataFrame, SparkSession}
object LinearRegressionPipeline {
@transient lazy val logger = Logger.getLogger(getClass.getName)
def linearRegressionWithVectorFormat(vectorAssembler: VectorAssembler, vectorIndexer: VectorIndexer, dataFrame: DataFrame) = {
val lr = new LinearRegression()
.setFeaturesCol("features")
.setLabelCol("label")
.setRegParam(0.1)
.setElasticNetParam(1.0)
.setMaxIter(10)
val pipeline = new Pipeline().setStages(Array(vectorAssembler, vectorIndexer, lr))
val Array(training, test) = dataFrame.randomSplit(Array(0.8, 0.2), seed = 12345)
val model = pipeline.fit(training)
val fullPredictions = model.transform(test).cache()
val predictions = fullPredictions.select("prediction").rdd.map(_.getDouble(0))
val labels = fullPredictions.select("label").rdd.map(_.getDouble(0))
val RMSE = new RegressionMetrics(predictions.zip(labels)).rootMeanSquaredError
println(s" Root mean squared error (RMSE): $RMSE")
}
def linearRegressionWithSVMFormat(spark: SparkSession) = {
// Load training data
val training = spark.read.format("libsvm")
.load("./src/main/scala/org/sparksamples/regression/dataset/BikeSharing/lsvmHours.txt")
val lr = new LinearRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)
// Fit the model
val lrModel = lr.fit(training)
// Print the coefficients and intercept for linear regression
println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")
// Summarize the model over the training set and print out some metrics
val trainingSummary = lrModel.summary
println(s"numIterations: ${trainingSummary.totalIterations}")
println(s"objectiveHistory: ${trainingSummary.objectiveHistory.toList}")
trainingSummary.residuals.show()
println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")
println(s"r2: ${trainingSummary.r2}")
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-Spark-Second-Edition,代码行数:61,代码来源:LinearRegressionPipeline.scala
示例2: DTreeRegressionJob
//设置package包名称以及导入依赖的类
import io.hydrosphere.mist.api._
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.VectorIndexer
import org.apache.spark.ml.regression.DecisionTreeRegressor
import org.apache.spark.sql.SparkSession
object DTreeRegressionJob extends MLMistJob {
def session: SparkSession = SparkSession
.builder()
.appName(context.appName)
.config(context.getConf)
.getOrCreate()
def train(datasetPath: String, savePath: String): Map[String, Any] = {
val dataset = session.read.format("libsvm").load(datasetPath)
val featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.setMaxCategories(4)
.fit(dataset)
// Train a DecisionTree model.
val dt = new DecisionTreeRegressor()
.setLabelCol("label")
.setFeaturesCol("indexedFeatures")
// Chain indexers and tree in a Pipeline.
val pipeline = new Pipeline()
.setStages(Array(featureIndexer, dt))
// Train model. This also runs the indexers.
val model = pipeline.fit(dataset)
model.write.overwrite().save(savePath)
Map.empty
}
def serve(modelPath: String, features: List[Array[Double]]): Map[String, Any] = {
import LocalPipelineModel._
val pipeline = PipelineLoader.load(modelPath)
val data = LocalData(LocalDataColumn("features", features))
val result: LocalData = pipeline.transform(data)
Map("result" -> result.select("prediction").toMapList)
}
}
示例3: DTreeClassificationJob
//设置package包名称以及导入依赖的类
import io.hydrosphere.mist.api._
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
import org.apache.spark.sql.SparkSession
object DTreeClassificationJob extends MLMistJob{
def session: SparkSession = SparkSession
.builder()
.appName(context.appName)
.config(context.getConf)
.getOrCreate()
def train(datasetPath: String, savePath: String): Map[String, Any] = {
val data = session.read.format("libsvm").load(datasetPath)
val Array(training, _) = data.randomSplit(Array(0.7, 0.3))
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
.fit(data)
val featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.setMaxCategories(4)// features with > 4 distinct values are treated as continuous.
.fit(data)
val dt = new DecisionTreeClassifier()
.setLabelCol("indexedLabel")
.setFeaturesCol("indexedFeatures")
val labelConverter = new IndexToString()
.setInputCol("prediction")
.setOutputCol("predictedLabel")
.setLabels(labelIndexer.labels)
val pipeline = new Pipeline()
.setStages(Array(labelIndexer, featureIndexer, dt, labelConverter))
val model = pipeline.fit(training)
model.write.overwrite().save(savePath)
Map.empty[String, Any]
}
def serve(modelPath: String, features: List[Array[Double]]): Map[String, Any] = {
import LocalPipelineModel._
val pipeline = PipelineLoader.load(modelPath)
val data = LocalData(
LocalDataColumn("features", features)
)
val result: LocalData = pipeline.transform(data)
Map("result" -> result.select("predictedLabel").toMapList)
}
}
示例4: VectorIndexerExample
//设置package包名称以及导入依赖的类
package org.apache.spark.examples.ml
import org.apache.spark.ml.feature.VectorIndexer
import org.apache.spark.sql.SQLContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
object VectorIndexerExample {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local").setAppName("VectorIndexerExample")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
// $example on$
val data = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
val indexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexed")
.setMaxCategories(10)
val indexerModel = indexer.fit(data)
val categoricalFeatures: Set[Int] = indexerModel.categoryMaps.keys.toSet
println(s"Chose ${categoricalFeatures.size} categorical features: " +
categoricalFeatures.mkString(", "))
// Create new column "indexed" with categorical values transformed to indices
val indexedData = indexerModel.transform(data)
indexedData.show()
// $example off$
sc.stop()
}
}