当前位置: 首页>>代码示例>>Scala>>正文


Scala CountVectorizerModel类代码示例

本文整理汇总了Scala中org.apache.spark.ml.feature.CountVectorizerModel的典型用法代码示例。如果您正苦于以下问题:Scala CountVectorizerModel类的具体用法?Scala CountVectorizerModel怎么用?Scala CountVectorizerModel使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了CountVectorizerModel类的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: CountVectorizerDemo

//设置package包名称以及导入依赖的类
package com.chapter11.SparkMachineLearning
import org.apache.spark.sql.SparkSession
import org.apache.spark.ml.feature.{ CountVectorizer, CountVectorizerModel }

object CountVectorizerDemo {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .master("local[*]")
      .config("spark.sql.warehouse.dir", "E:/Exp/")
      .appName(s"OneVsRestExample")
      .getOrCreate()

    val df = spark.createDataFrame(
      Seq((0, Array("Jason", "David")),
        (1, Array("David", "Martin")),
        (2, Array("Martin", "Jason")),
        (3, Array("Jason", "Daiel")),
        (4, Array("Daiel", "Martin")),
        (5, Array("Moahmed", "Jason")),
        (6, Array("David", "David")),
        (7, Array("Jason", "Martin")))).toDF("id", "name")

    df.show(false)

    // fit a CountVectorizerModel from the corpus
    val cvModel: CountVectorizerModel = new CountVectorizer()
      .setInputCol("name")
      .setOutputCol("features")
      .setVocabSize(3)
      .setMinDF(2)
      .fit(df)

    val feature = cvModel.transform(df)
    feature.show(false)

    spark.stop()
  }
} 
开发者ID:PacktPublishing,项目名称:Scala-and-Spark-for-Big-Data-Analytics,代码行数:40,代码来源:CountVectorizerDemo.scala

示例2: CountVectorizer

//设置package包名称以及导入依赖的类
package com.lhcg.ml

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
import org.apache.spark.ml.feature.{CountVectorizer, CountVectorizerModel}


object CountVectorizer {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("CountVectorizer")
    //      .setMaster("local[2]")
    val spark = new SparkContext(conf)
    val sqlContext = new SQLContext(spark)

    val df = sqlContext.createDataFrame(Seq(
      (0, Array("a", "b", "c")),
      (1, Array("a", "b", "b", "c", "a"))
    )).toDF("id", "words")

    // fit a CountVectorizerModel from the corpus
    val cvModel: CountVectorizerModel = new CountVectorizer()
      .setInputCol("words")
      .setOutputCol("features")
      .setVocabSize(3)
      .setMinDF(2)
      .fit(df)

    // alternatively, define CountVectorizerModel with a-priori vocabulary
    val cvm = new CountVectorizerModel(Array("a", "b", "c"))
      .setInputCol("words")
      .setOutputCol("features")

    cvModel.transform(df).select("features").show()
  }
} 
开发者ID:lhcg,项目名称:lovespark,代码行数:36,代码来源:CountVectorizer.scala

示例3: LocalCountVectorizerModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.preprocessors

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.feature.CountVectorizerModel
import org.apache.spark.ml.linalg.Vectors

import scala.collection.mutable

class LocalCountVectorizerModel(override val sparkTransformer: CountVectorizerModel) extends LocalTransformer[CountVectorizerModel] {
  override def transform(localData: LocalData): LocalData = {
    val dict = sparkTransformer.vocabulary.zipWithIndex.toMap
    val minTf = sparkTransformer.getMinTF

    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val newCol = column.data.map { data =>
          val termCounts = mutable.HashMap.empty[Int, Double]
          var tokenCount = 0L
          val arr = data.asInstanceOf[List[String]]
          arr.foreach { token =>
            dict.get(token) foreach  { index =>
              val storedValue = termCounts.getOrElseUpdate(index, 0.0)
              termCounts.update(index, storedValue + 1.0)
            }
            tokenCount += 1
          }
          val eTF = if (minTf >= 1.0) minTf else tokenCount * minTf
          val eCounts = if (sparkTransformer.getBinary) {
            termCounts filter(_._2 >= eTF) map(_._1 -> 1.0) toSeq
          } else {
            termCounts filter(_._2 >= eTF) toSeq
          }

          Vectors.sparse(dict.size, eCounts.toList)
        }
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newCol))
      case None => localData
    }
  }
}

object LocalCountVectorizerModel extends LocalModel[CountVectorizerModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): CountVectorizerModel = {
    val vocabulary = data("vocabulary").asInstanceOf[List[String]].toArray
    val inst = new CountVectorizerModel(metadata.uid, vocabulary)
    inst
      .setInputCol(metadata.paramMap("inputCol").toString)
      .setOutputCol(metadata.paramMap("outputCol").toString)
      .set(inst.binary, metadata.paramMap("binary").asInstanceOf[Boolean])
      .set(inst.minDF, metadata.paramMap("minDF").toString.toDouble)
      .set(inst.minTF, metadata.paramMap("minTF").toString.toDouble)
      .set(inst.vocabSize, metadata.paramMap("vocabSize").asInstanceOf[Number].intValue())
  }

  override implicit def getTransformer(transformer: CountVectorizerModel): LocalTransformer[CountVectorizerModel] = new LocalCountVectorizerModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:57,代码来源:LocalCountVectorizerModel.scala

示例4: AmazonReviewsIT

//设置package包名称以及导入依赖的类
package com.github.leifker.spark.sentiment

import com.github.leifker.spark.test.{ITest, ITestContext}
import org.apache.spark.ml.feature.{CountVectorizer, CountVectorizerModel}
import org.apache.spark.sql.{Dataset, Row}
import org.scalatest.FlatSpec
import org.scalatest.tagobjects.Slow


class AmazonReviewsIT extends FlatSpec {
  val amazonReviews = AmazonReviews(ITestContext.localConfig, ITestContext.amazonReviewsKeyspace, "IntegrationTest")
  val oneStarReviews = amazonReviews.oneStarElectronics
    .sample(false, 0.2)
    .cache()
  val fiveStarReviews = amazonReviews.fiveStarElectronics
    .sample(false, 0.2)
    .cache()
  val sampleReviews: Dataset[Row] = amazonReviews.oneStarElectronics.sample(false, 0.007)
    .union(amazonReviews.fiveStarElectronics.sample(false, 0.007))

  "Spark" should "be able to process text reviews of sample rows" taggedAs(ITest, Slow) in {
    val tokenizer = new ReviewTokenizer()
    sampleReviews.foreach(row => tokenizer.transform(row.getAs[String]("text")))
  }

  it should "be able get at least a 500 sample" taggedAs(ITest, Slow) in {
    assert(sampleReviews.count() >= 1000)
  }

  it should "be able to tokenize" taggedAs(ITest, Slow) in {
    val tokenizer = new ReviewTokenizer().setInputCol("text").setOutputCol("words")
    val tokenized = tokenizer.transform(oneStarReviews)
    assert(tokenized.select("words", "score").take(1000).length == 1000)
  }

  it should "vectorize" taggedAs(ITest, Slow) in {
    val tokenizer = new ReviewTokenizer().setInputCol("text").setOutputCol("words")
    val tokenized = tokenizer.transform(oneStarReviews.limit(1000))
    val cvModel: CountVectorizerModel = new CountVectorizer()
      .setInputCol("words")
      .setOutputCol("features")
      .setVocabSize(500)
      .setMinDF(10)
      .fit(tokenized)

    cvModel.transform(tokenized).select("features").show()
  }
} 
开发者ID:leifker,项目名称:geo-sentiment,代码行数:49,代码来源:AmazonReviewsIT.scala

示例5: LocalCountVectorizerModel

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.CountVectorizerModel
import org.apache.spark.ml.linalg.Vectors

import scala.collection.mutable

class LocalCountVectorizerModel(override val sparkTransformer: CountVectorizerModel) extends LocalTransformer[CountVectorizerModel] {
  override def transform(localData: LocalData): LocalData = {
    val dict = sparkTransformer.vocabulary.zipWithIndex.toMap
    val minTf = sparkTransformer.getMinTF

    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val newCol = column.data.map { data =>
          val termCounts = mutable.HashMap.empty[Int, Double]
          var tokenCount = 0L
          val arr = data.asInstanceOf[List[String]]
          arr.foreach { token =>
            dict.get(token) foreach  { index =>
              val storedValue = termCounts.getOrElseUpdate(index, 0.0)
              termCounts.update(index, storedValue + 1.0)
            }
            tokenCount += 1
          }
          val eTF = if (minTf >= 1.0) minTf else tokenCount * minTf
          val eCounts = if (sparkTransformer.getBinary) {
            termCounts filter(_._2 >= eTF) map(_._1 -> 1.0) toSeq
          } else {
            termCounts filter(_._2 >= eTF) toSeq
          }

          Vectors.sparse(dict.size, eCounts.toList)
        }
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newCol))
      case None => localData
    }
  }
}

object LocalCountVectorizerModel extends LocalModel[CountVectorizerModel] {
  override def load(metadata: Metadata, data: Map[String, Any]): CountVectorizerModel = {
    val vocabulary = data("vocabulary").asInstanceOf[List[String]].toArray
    val inst = new CountVectorizerModel(metadata.uid, vocabulary)
    inst
      .setInputCol(metadata.paramMap("inputCol").toString)
      .setOutputCol(metadata.paramMap("outputCol").toString)
      .set(inst.binary, metadata.paramMap("binary").asInstanceOf[Boolean])
      .set(inst.minDF, metadata.paramMap("minDF").toString.toDouble)
      .set(inst.minTF, metadata.paramMap("minTF").toString.toDouble)
      .set(inst.vocabSize, metadata.paramMap("vocabSize").asInstanceOf[Number].intValue())
  }

  override implicit def getTransformer(transformer: CountVectorizerModel): LocalTransformer[CountVectorizerModel] = new LocalCountVectorizerModel(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:57,代码来源:LocalCountVectorizerModel.scala


注:本文中的org.apache.spark.ml.feature.CountVectorizerModel类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。