当前位置: 首页>>代码示例>>Scala>>正文


Scala Binarizer类代码示例

本文整理汇总了Scala中org.apache.spark.ml.feature.Binarizer的典型用法代码示例。如果您正苦于以下问题:Scala Binarizer类的具体用法?Scala Binarizer怎么用?Scala Binarizer使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了Binarizer类的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: LocalBinarizer

//设置package包名称以及导入依赖的类
package io.hydrosphere.spark_ml_serving.preprocessors

import io.hydrosphere.spark_ml_serving._
import org.apache.spark.ml.feature.Binarizer

class LocalBinarizer(override val sparkTransformer: Binarizer) extends LocalTransformer[Binarizer] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val treshhold: Double = sparkTransformer.getThreshold
        val newData = column.data.map(r => {
          if (r.asInstanceOf[Number].doubleValue() > treshhold) 1.0 else 0.0
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalBinarizer extends LocalModel[Binarizer] {
  override def load(metadata: Metadata, data: Map[String, Any]): Binarizer = {
    new Binarizer(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setThreshold(metadata.paramMap("threshold").toString.toDouble)
  }

  override implicit def getTransformer(transformer: Binarizer): LocalTransformer[Binarizer] = new LocalBinarizer(transformer)
} 
开发者ID:Hydrospheredata,项目名称:spark-ml-serving,代码行数:30,代码来源:LocalBinarizer.scala

示例2: LocalBinarizer

//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.preprocessors

import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.feature.Binarizer

class LocalBinarizer(override val sparkTransformer: Binarizer) extends LocalTransformer[Binarizer] {
  override def transform(localData: LocalData): LocalData = {
    localData.column(sparkTransformer.getInputCol) match {
      case Some(column) =>
        val treshhold: Double = sparkTransformer.getThreshold
        val newData = column.data.map(r => {
          if (r.asInstanceOf[Number].doubleValue() > treshhold) 1.0 else 0.0
        })
        localData.withColumn(LocalDataColumn(sparkTransformer.getOutputCol, newData))
      case None => localData
    }
  }
}

object LocalBinarizer extends LocalModel[Binarizer] {
  override def load(metadata: Metadata, data: Map[String, Any]): Binarizer = {
    new Binarizer(metadata.uid)
      .setInputCol(metadata.paramMap("inputCol").asInstanceOf[String])
      .setOutputCol(metadata.paramMap("outputCol").asInstanceOf[String])
      .setThreshold(metadata.paramMap("threshold").toString.toDouble)
  }

  override implicit def getTransformer(transformer: Binarizer): LocalTransformer[Binarizer] = new LocalBinarizer(transformer)
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:30,代码来源:LocalBinarizer.scala

示例3: BinarizerJob

//设置package包名称以及导入依赖的类
import io.hydrosphere.mist.api._
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.Binarizer

import org.apache.spark.sql.SparkSession

object BinarizerJob extends MLMistJob {

  def session: SparkSession = SparkSession
    .builder()
    .appName(context.appName)
    .config(context.getConf)
    .getOrCreate()

  def train(savePath: String): Map[String, Any] = {
    val data = Array((0, 0.1), (1, 0.8), (2, 0.2))
    val dataFrame = session.createDataFrame(data).toDF("id", "feature")

    val binarizer: Binarizer = new Binarizer()
      .setInputCol("feature")
      .setOutputCol("binarized_feature")
      .setThreshold(5.0)

    val pipeline = new Pipeline().setStages(Array(binarizer))

    val model = pipeline.fit(dataFrame)

    model.write.overwrite().save(savePath)
    Map.empty[String, Any]
  }

  def serve(modelPath: String, features: List[Double]): Map[String, Any] = {
    import LocalPipelineModel._

    val pipeline = PipelineLoader.load(modelPath)
    val data = LocalData(LocalDataColumn("feature", features))

    val result: LocalData = pipeline.transform(data)
    Map("result" -> result.select("feature", "binarized_feature").toMapList)
  }
} 
开发者ID:Hydrospheredata,项目名称:mist,代码行数:43,代码来源:BinarizerJob.scala


注:本文中的org.apache.spark.ml.feature.Binarizer类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。