本文整理汇总了Scala中org.apache.spark.ml.classification.RandomForestClassificationModel类的典型用法代码示例。如果您正苦于以下问题:Scala RandomForestClassificationModel类的具体用法?Scala RandomForestClassificationModel怎么用?Scala RandomForestClassificationModel使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了RandomForestClassificationModel类的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: LocalRandomForestClassificationModel
//设置package包名称以及导入依赖的类
package io.hydrosphere.mist.api.ml.classification
import io.hydrosphere.mist.api.ml._
import org.apache.spark.ml.classification.{DecisionTreeClassificationModel, RandomForestClassificationModel}
import org.apache.spark.ml.linalg.{DenseVector, Vector, Vectors}
class LocalRandomForestClassificationModel(override val sparkTransformer: RandomForestClassificationModel) extends LocalTransformer[RandomForestClassificationModel] {
override def transform(localData: LocalData): LocalData = {
localData.column(sparkTransformer.getFeaturesCol) match {
case Some(column) =>
val cls = classOf[RandomForestClassificationModel]
val rawPredictionCol = LocalDataColumn(sparkTransformer.getRawPredictionCol, column.data.map(f => Vectors.dense(f.asInstanceOf[Array[Double]])).map { vector =>
val predictRaw = cls.getDeclaredMethod("predictRaw", classOf[Vector])
predictRaw.invoke(sparkTransformer, vector)
})
val probabilityCol = LocalDataColumn(sparkTransformer.getProbabilityCol, rawPredictionCol.data.map(_.asInstanceOf[DenseVector]).map { vector =>
val raw2probabilityInPlace = cls.getDeclaredMethod("raw2probabilityInPlace", classOf[Vector])
raw2probabilityInPlace.invoke(sparkTransformer, vector.copy)
})
val predictionCol = LocalDataColumn(sparkTransformer.getPredictionCol, rawPredictionCol.data.map(_.asInstanceOf[DenseVector]).map { vector =>
val raw2prediction = cls.getMethod("raw2prediction", classOf[Vector])
raw2prediction.invoke(sparkTransformer, vector.copy)
})
localData.withColumn(rawPredictionCol)
.withColumn(probabilityCol)
.withColumn(predictionCol)
case None => localData
}
}
}
object LocalRandomForestClassificationModel extends LocalModel[RandomForestClassificationModel] {
override def load(metadata: Metadata, data: Map[String, Any]): RandomForestClassificationModel = {
val treesMetadata = metadata.paramMap("treesMetadata").asInstanceOf[Map[String, Any]]
val trees = treesMetadata map { treeKv =>
val treeMeta = treeKv._2.asInstanceOf[Map[String, Any]]
val meta = treeMeta("metadata").asInstanceOf[Metadata]
LocalDecisionTreeClassificationModel.createTree(
meta,
data(treeKv._1).asInstanceOf[Map[String, Any]]
)
}
val ctor = classOf[RandomForestClassificationModel].getDeclaredConstructor(classOf[String], classOf[Array[DecisionTreeClassificationModel]], classOf[Int], classOf[Int])
ctor.setAccessible(true)
ctor
.newInstance(
metadata.uid,
trees.to[Array],
metadata.numFeatures.get.asInstanceOf[java.lang.Integer],
metadata.numClasses.get.asInstanceOf[java.lang.Integer]
)
.setFeaturesCol(metadata.paramMap("featuresCol").asInstanceOf[String])
.setPredictionCol(metadata.paramMap("predictionCol").asInstanceOf[String])
.setProbabilityCol(metadata.paramMap("probabilityCol").asInstanceOf[String])
}
override implicit def getTransformer(transformer: RandomForestClassificationModel): LocalTransformer[RandomForestClassificationModel] = new LocalRandomForestClassificationModel(transformer)
}
示例2: RandomForestClassificationModelToMleap
//设置package包名称以及导入依赖的类
package org.apache.spark.ml.mleap.converter.runtime.classification
import com.truecar.mleap.core.classification.RandomForestClassification
import com.truecar.mleap.runtime.transformer
import org.apache.spark.ml.classification.{DecisionTreeClassificationModel, RandomForestClassificationModel}
import org.apache.spark.ml.mleap.converter.runtime.TransformerToMleap
object RandomForestClassificationModelToMleap extends TransformerToMleap[RandomForestClassificationModel, transformer.RandomForestClassificationModel] {
override def toMleap(t: RandomForestClassificationModel): transformer.RandomForestClassificationModel = {
val trees = t.trees.asInstanceOf[Array[DecisionTreeClassificationModel]]
.map(tree => DecisionTreeClassificationModelToMleap(tree).toMleap)
val model = RandomForestClassification(trees,
t.numFeatures,
t.numClasses)
transformer.RandomForestClassificationModel(t.getFeaturesCol,
t.getPredictionCol,
model)
}
}
示例3: BaseTransformerConverter
//设置package包名称以及导入依赖的类
package org.apache.spark.ml.mleap.converter.runtime
import com.truecar.mleap.runtime.transformer
import org.apache.spark.ml.PipelineModel
import org.apache.spark.ml.classification.RandomForestClassificationModel
import org.apache.spark.ml.feature.{IndexToString, StandardScalerModel, StringIndexerModel, VectorAssembler}
import org.apache.spark.ml.mleap.classification.SVMModel
import org.apache.spark.ml.mleap.converter.runtime.classification.{RandomForestClassificationModelToMleap, SupportVectorMachineModelToMleap}
import org.apache.spark.ml.mleap.converter.runtime.feature.{IndexToStringToMleap, StandardScalerModelToMleap, StringIndexerModelToMleap, VectorAssemblerModelToMleap}
import org.apache.spark.ml.mleap.converter.runtime.regression.{LinearRegressionModelToMleap, RandomForestRegressionModelToMleap}
import org.apache.spark.ml.regression.{LinearRegressionModel, RandomForestRegressionModel}
trait BaseTransformerConverter extends SparkTransformerConverter {
// regression
implicit val mleapLinearRegressionModelToMleap: TransformerToMleap[LinearRegressionModel, transformer.LinearRegressionModel] =
addConverter(LinearRegressionModelToMleap)
implicit val mleapRandomForestRegressionModelToMleap: TransformerToMleap[RandomForestRegressionModel, transformer.RandomForestRegressionModel] =
addConverter(RandomForestRegressionModelToMleap)
// classification
implicit val mleapRandomForestClassificationModelToMleap: TransformerToMleap[RandomForestClassificationModel, transformer.RandomForestClassificationModel] =
addConverter(RandomForestClassificationModelToMleap)
implicit val mleapSupportVectorMachineModelToMleap: TransformerToMleap[SVMModel, transformer.SupportVectorMachineModel] =
addConverter(SupportVectorMachineModelToMleap)
//feature
implicit val mleapIndexToStringToMleap: TransformerToMleap[IndexToString, transformer.ReverseStringIndexerModel] =
addConverter(IndexToStringToMleap)
implicit val mleapStandardScalerModelToMleap: TransformerToMleap[StandardScalerModel, transformer.StandardScalerModel] =
addConverter(StandardScalerModelToMleap)
implicit val mleapStringIndexerModelToMleap: TransformerToMleap[StringIndexerModel, transformer.StringIndexerModel] =
addConverter(StringIndexerModelToMleap)
implicit val mleapVectorAssemblerToMleap: TransformerToMleap[VectorAssembler, transformer.VectorAssemblerModel] =
addConverter(VectorAssemblerModelToMleap)
// other
implicit val mleapPipelineModelToMleap: TransformerToMleap[PipelineModel, transformer.PipelineModel] =
addConverter(PipelineModelToMleap(this))
}
object BaseTransformerConverter extends BaseTransformerConverter