本文整理汇总了Scala中org.apache.kafka.common.serialization.StringSerializer类的典型用法代码示例。如果您正苦于以下问题:Scala StringSerializer类的具体用法?Scala StringSerializer怎么用?Scala StringSerializer使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了StringSerializer类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: ProcessingKafkaApplication
//设置package包名称以及导入依赖的类
package com.packt.chapter8
import akka.actor.ActorSystem
import akka.kafka.scaladsl.{Consumer, Producer}
import akka.kafka.{ConsumerSettings, ProducerSettings, Subscriptions}
import akka.stream.{ActorMaterializer, ClosedShape}
import akka.stream.scaladsl.{Flow, GraphDSL, RunnableGraph, Sink, Source}
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.{ByteArrayDeserializer, ByteArraySerializer, StringDeserializer, StringSerializer}
import scala.concurrent.duration._
object ProcessingKafkaApplication extends App {
implicit val actorSystem = ActorSystem("SimpleStream")
implicit val actorMaterializer = ActorMaterializer()
val bootstrapServers = "localhost:9092"
val kafkaTopic = "akka_streams_topic"
val partition = 0
val subscription = Subscriptions.assignment(new TopicPartition(kafkaTopic, partition))
val consumerSettings = ConsumerSettings(actorSystem, new ByteArrayDeserializer, new StringDeserializer)
.withBootstrapServers(bootstrapServers)
.withGroupId("akka_streams_group")
.withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest")
val producerSettings = ProducerSettings(actorSystem, new ByteArraySerializer, new StringSerializer)
.withBootstrapServers(bootstrapServers)
val runnableGraph = RunnableGraph.fromGraph(GraphDSL.create() { implicit builder =>
import GraphDSL.Implicits._
val tickSource = Source.tick(0 seconds, 5 seconds, "Hello from Akka Streams using Kafka!")
val kafkaSource = Consumer.plainSource(consumerSettings, subscription)
val kafkaSink = Producer.plainSink(producerSettings)
val printlnSink = Sink.foreach(println)
val mapToProducerRecord = Flow[String].map(elem => new ProducerRecord[Array[Byte], String](kafkaTopic, elem))
val mapFromConsumerRecord = Flow[ConsumerRecord[Array[Byte], String]].map(record => record.value())
tickSource ~> mapToProducerRecord ~> kafkaSink
kafkaSource ~> mapFromConsumerRecord ~> printlnSink
ClosedShape
})
runnableGraph.run()
}
示例2: Settings
//设置package包名称以及导入依赖的类
package com.scalaio.kafka.consumer
import akka.actor.ActorSystem
import akka.kafka.ConsumerMessage.CommittableMessage
import akka.kafka.scaladsl.Consumer
import akka.kafka.{ConsumerSettings, ProducerSettings, Subscriptions}
import akka.stream.ActorMaterializer
import akka.stream.scaladsl.Sink
import com.scalaio.kafka.consumer.Settings.consumerSettings
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.common.serialization.{ByteArrayDeserializer, ByteArraySerializer, StringDeserializer, StringSerializer}
import scala.concurrent.Future
object Settings {
def consumerSettings(implicit system: ActorSystem) =
ConsumerSettings(system, new ByteArrayDeserializer, new StringDeserializer)
.withBootstrapServers("localhost:9092")
.withGroupId("CommittableSourceConsumer")
.withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest")
def producerSettings(implicit system: ActorSystem) =
ProducerSettings(system, new ByteArraySerializer, new StringSerializer)
.withBootstrapServers("localhost:9092")
}
object CommittableSource extends App {
type KafkaMessage = CommittableMessage[Array[Byte], String]
implicit val system = ActorSystem("CommittableSourceConsumerMain")
implicit val materializer = ActorMaterializer()
implicit val ec = system.dispatcher
// explicit commit
Consumer
.committableSource(consumerSettings, Subscriptions.topics("topic1"))
.mapAsync(1) { msg =>
BusinessController.handleMessage(msg.record.value)
.flatMap(response => msg.committableOffset.commitScaladsl())
.recoverWith { case e => msg.committableOffset.commitScaladsl() }
}
.runWith(Sink.ignore)
}
object BusinessController {
type Service[A, B] = A => Future[B]
val handleMessage: Service[String, String] =
(message) => Future.successful(message.toUpperCase)
}
示例3: ReadyKafkaProducer
//设置package包名称以及导入依赖的类
package com.bencassedy.readykafka.producer
import java.util.Properties
import java.util.concurrent.TimeUnit
import org.apache.kafka.clients.producer.{ProducerRecord, KafkaProducer}
import org.apache.kafka.common.serialization.{StringSerializer, StringDeserializer}
class ReadyKafkaProducer {
case class KafkaProducerConfigs(brokerList: String = "127.0.0.1:9092") {
val properties = new Properties()
properties.put("bootstrap.servers", brokerList)
properties.put("key.serializer", classOf[StringSerializer])
properties.put("value.serializer", classOf[StringSerializer])
// properties.put("serializer.class", classOf[StringDeserializer])
// properties.put("batch.size", 16384)
// properties.put("linger.ms", 1)
// properties.put("buffer.memory", 33554432)
}
val producer = new KafkaProducer[String, String](KafkaProducerConfigs().properties)
def produce(topic: String, messages: Iterable[String]): Unit = {
messages.foreach { m =>
producer.send(new ProducerRecord[String, String](topic, m))
}
producer.close(100L, TimeUnit.MILLISECONDS)
}
}
示例4: KafkaFeedsExporter
//设置package包名称以及导入依赖的类
package ru.fediq.scrapingkit.backend
import cakesolutions.kafka.KafkaProducer
import org.apache.kafka.clients.producer.{ProducerRecord, RecordMetadata}
import org.apache.kafka.common.serialization.StringSerializer
import ru.fediq.scrapingkit.scraper.ScrapedEntity
import scala.concurrent.Future
class KafkaFeedsExporter(
val bootstrapServer: String,
val topic: String
) extends FeedExporter {
val producer = KafkaProducer(KafkaProducer.Conf(new StringSerializer(), new StringSerializer, bootstrapServer))
override def store[T <: ScrapedEntity](entity: T): Future[RecordMetadata] = {
producer.send(new ProducerRecord(topic, entity.dump))
}
override def close() = producer.close()
}
示例5: EventSerialiser
//设置package包名称以及导入依赖的类
package serialisation
import java.util
import model.Event
import org.apache.kafka.common.serialization.{Serializer, StringSerializer}
import org.json4s.native.Serialization
import org.json4s.native.Serialization.write
import org.json4s.{Formats, NoTypeHints}
class EventSerialiser extends Serializer[Event] {
implicit val formats: Formats = Serialization.formats(NoTypeHints)
val stringSerialiser = new StringSerializer
override def configure(configs: util.Map[String, _], isKey: Boolean): Unit = {
stringSerialiser.configure(configs, isKey)
}
override def serialize(topic: String, data: Event): Array[Byte] = {
val stringValue = write(data)
stringSerialiser.serialize(topic, stringValue)
}
override def close(): Unit = {
stringSerialiser.close()
}
}
示例6: running
//设置package包名称以及导入依赖的类
package producers
import akka.kafka.ProducerSettings
import akka.kafka.scaladsl.Producer
import akka.stream.ActorMaterializer
import akka.stream.scaladsl.{Keep, Source}
import akka.{Done, NotUsed}
import broker.ActorBroker
import config.AppConfig
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.serialization.{ByteArraySerializer, StringSerializer}
import scala.concurrent.Future
trait Producerable extends ActorBroker {
val config: AppConfig
implicit val materializer = ActorMaterializer()
val producerSettings = ProducerSettings(context.system, new ByteArraySerializer, new StringSerializer)
.withBootstrapServers(s"${config.kafkaConfig.uri}:${config.kafkaConfig.port}")
def running(): Receive = {
case Stop =>
log.info("Stopping Kafka producer stream and actor")
context.stop(self)
}
def sendToSink(message: String): Unit = {
log.info(s"Attempting to produce message on topic $topicName")
val kafkaSink = Producer.plainSink(producerSettings)
val stringToProducerRecord: ProducerRecord[Array[Byte], String] = new ProducerRecord[Array[Byte], String](topicName, message)
val (a, future): (NotUsed, Future[Done]) = Source.fromFuture(Future(stringToProducerRecord))
.toMat(kafkaSink)(Keep.both)
.run()
future.onFailure {
case ex =>
log.error("Stream failed due to error, restarting", ex)
throw ex
}
context.become(running())
log.info(s"Writer now running, writing random numbers to topic $topicName")
}
case object Stop
}
示例7: Main
//设置package包名称以及导入依赖的类
import java.util.concurrent.TimeUnit.SECONDS
import akka.actor.ActorSystem
import akka.kafka.ProducerSettings
import akka.kafka.scaladsl.Producer
import akka.stream.scaladsl.Source
import akka.stream.{ActorMaterializer, ThrottleMode}
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.serialization.{ByteArraySerializer, StringSerializer}
import scala.concurrent.duration.FiniteDuration
import scala.language.postfixOps
object Main {
def main(args: Array[String]): Unit = {
implicit val system = ActorSystem.apply("akka-stream-kafka")
implicit val materializer = ActorMaterializer()
val producerSettings = ProducerSettings(system, new ByteArraySerializer, new StringSerializer)
.withBootstrapServers("localhost:9092;localhost:9093")
Source.repeat(0)
.scan(0)((next, _) => next + 1)
.throttle(1, FiniteDuration(2L, SECONDS), 1, ThrottleMode.Shaping)
.map(nextInt => {
val topicName = "topic1"
val partitionCount = 2
val partition = nextInt % partitionCount
new ProducerRecord[Array[Byte], String](topicName, nextInt.toString.getBytes, nextInt.toString)
// new ProducerRecord[Array[Byte], String](topicName, partition, null, nextInt.toString)
})
.runWith(Producer.plainSink(producerSettings))
}
}
示例8: self
//设置package包名称以及导入依赖的类
package com.omearac.producers
import akka.actor.{ActorRef, ActorSystem}
import akka.kafka.ProducerSettings
import akka.kafka.scaladsl.Producer
import akka.stream.OverflowStrategy
import akka.stream.scaladsl.{Flow, Source}
import com.omearac.shared.JsonMessageConversion.Conversion
import com.omearac.shared.{AkkaStreams, EventSourcing}
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.serialization.{ByteArraySerializer, StringSerializer}
trait ProducerStream extends AkkaStreams with EventSourcing {
implicit val system: ActorSystem
def self: ActorRef
def createStreamSource[msgType] = {
Source.queue[msgType](Int.MaxValue,OverflowStrategy.backpressure)
}
def createStreamSink(producerProperties: Map[String, String]) = {
val kafkaMBAddress = producerProperties("bootstrap-servers")
val producerSettings = ProducerSettings(system, new ByteArraySerializer, new StringSerializer).withBootstrapServers(kafkaMBAddress)
Producer.plainSink(producerSettings)
}
def createStreamFlow[msgType: Conversion](producerProperties: Map[String, String]) = {
val numberOfPartitions = producerProperties("num.partitions").toInt -1
val topicToPublish = producerProperties("publish-topic")
val rand = new scala.util.Random
val range = 0 to numberOfPartitions
Flow[msgType].map { msg =>
val partition = range(rand.nextInt(range.length))
val stringJSONMessage = Conversion[msgType].convertToJson(msg)
new ProducerRecord[Array[Byte], String](topicToPublish, partition, null, stringJSONMessage)
}
}
}
示例9: ReactiveKafkaSingleConsumerMultipleProducerScala
//设置package包名称以及导入依赖的类
package org.rgcase.reactivekafka
import akka.actor.ActorSystem
import akka.kafka.ConsumerMessage.{ CommittableMessage, CommittableOffsetBatch }
import akka.kafka.ProducerMessage.Message
import akka.kafka.scaladsl.{ Consumer, Producer }
import akka.kafka.{ ConsumerSettings, ProducerSettings, Subscriptions }
import akka.stream.ActorMaterializer
import akka.stream.scaladsl.{ Flow, Sink }
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.serialization.{ ByteArrayDeserializer, ByteArraySerializer, StringDeserializer, StringSerializer }
class ReactiveKafkaSingleConsumerMultipleProducerScala extends App {
implicit val system = ActorSystem("reactivekafkascala")
implicit val mat = ActorMaterializer()
val consumerSettings = ConsumerSettings(system, new ByteArrayDeserializer, new StringDeserializer)
.withBootstrapServers("localhost:9092")
.withGroupId("group1")
.withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest")
val producerSettings = ProducerSettings(system, new ByteArraySerializer, new StringSerializer)
.withBootstrapServers("localhost:9093")
val kafkaSource =
Consumer.committableSource(consumerSettings, Subscriptions.topics("sourcetopic"))
def toProducerMessage(topic: String) = (msg: CommittableMessage[Array[Byte], String]) ?
Message[Array[Byte], String, CommittableMessage[Array[Byte], String]](new ProducerRecord(topic, msg.record.value), msg)
val producerFlow1 =
Flow.fromFunction(toProducerMessage("targettopic1")).via(Producer.flow(producerSettings)).map(_.message.passThrough)
val producerFlow2 =
Flow.fromFunction(toProducerMessage("targettopic2")).via(Producer.flow(producerSettings)).map(_.message.passThrough)
val producerFlow3 =
Flow.fromFunction(toProducerMessage("targettopic3")).via(Producer.flow(producerSettings)).map(_.message.passThrough)
kafkaSource
.via(producerFlow1)
.via(producerFlow2)
.via(producerFlow3)
.batch(max = 20, first ? CommittableOffsetBatch.empty.updated(first.committableOffset)) { (batch, elem) ?
batch.updated(elem.committableOffset)
}.mapAsync(3)(_.commitScaladsl())
.runWith(Sink.ignore)
}
开发者ID:rgcase,项目名称:testplayground,代码行数:52,代码来源:ReactiveKafkaSingleConsumerMultipleProducerScala.scala
示例10: config
//设置package包名称以及导入依赖的类
package com.example
import akka.actor.Actor
import akka.event.LoggingAdapter
import cakesolutions.kafka.akka.KafkaConsumerActor.Subscribe
import cakesolutions.kafka.akka.{ConsumerRecords, KafkaConsumerActor, KafkaProducerActor, ProducerRecords}
import cakesolutions.kafka.{KafkaProducer, KafkaProducerRecord}
import com.example.PingPongProtocol.PingPongMessage
import com.typesafe.config.Config
import org.apache.kafka.common.serialization.{StringDeserializer, StringSerializer}
import scala.util.Random
trait KafkaConfig{
def config:Config
def log: LoggingAdapter
def randomString(len: Int= 5): String = Random.alphanumeric.take(len).mkString("")
}
trait PingPongConsumer extends KafkaConfig{
this: Actor =>
//for pattern matching in our receive method
val msgExtractor = ConsumerRecords.extractor[java.lang.String, PingPongMessage]
val kafkaConsumerActor = context.actorOf(
KafkaConsumerActor.props(config,new StringDeserializer(), new JsonDeserializer[PingPongMessage], self),
"PingKafkaConsumerActor"
)
def subscribe(topics: List[String]) =
kafkaConsumerActor ! Subscribe.AutoPartition(topics)
}
trait PingPongProducer extends KafkaConfig{
this: Actor =>
val kafkaProducerConf = KafkaProducer.Conf(
bootstrapServers = config.getString("bootstrap.servers"),
keySerializer = new StringSerializer(),
valueSerializer = new JsonSerializer[PingPongMessage])
val kafkaProducerActor = context.actorOf(KafkaProducerActor.props( kafkaProducerConf))
def submitMsg(topics: List[String], msg: PingPongMessage) = {
log.info(s"Placing $msg on ${topics.mkString(",")}")
topics.foreach(topic => kafkaProducerActor ! ProducerRecords(List(KafkaProducerRecord(topic, randomString(3), msg))))
}
}
示例11: SampleSubmitter
//设置package包名称以及导入依赖的类
package com.example.smaple
import cakesolutions.kafka.{KafkaProducer, KafkaProducerRecord}
import com.example.JsonSerializer
import com.typesafe.config.Config
import org.apache.kafka.common.serialization.StringSerializer
class SampleSubmitter(config: Config) {
private val producer = KafkaProducer(
KafkaProducer.Conf(
config,
keySerializer = new StringSerializer,
valueSerializer = new JsonSerializer[SubmitSampleCommand])
)
private val topic = config.getString("topic")
def submitSample(meterId: MeterId, submitSampleCommand: SubmitSampleCommand) = producer.send(
KafkaProducerRecord(topic, meterId.id.toString, submitSampleCommand)
)
def close() = producer.close()
}
示例12: ReactiveProducer
//设置package包名称以及导入依赖的类
package co.s4n.reactiveKafka
import akka.actor.ActorSystem
import akka.kafka.ProducerMessage
import akka.kafka.ProducerSettings
import akka.kafka.scaladsl.Producer
import akka.stream.scaladsl.Source
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.serialization.ByteArraySerializer
import org.apache.kafka.common.serialization.StringSerializer
import akka.stream.ActorMaterializer
import akka.stream.scaladsl.Sink
import scala.concurrent.Future
import akka.Done
import scala.util.{ Failure, Success }
object ReactiveProducer {
val system = ActorSystem("example")
implicit val ec = system.dispatcher
implicit val materializer = ActorMaterializer.create(system)
val producerSettings = ProducerSettings(system, new ByteArraySerializer, new StringSerializer)
.withBootstrapServers("localhost:9092")
val kafkaProducer = producerSettings.createKafkaProducer()
def produce(msg: String): Unit = {
val done = Source(1 to 1)
.map(_.toString)
.map { elem =>
println("\n" + msg);
new ProducerRecord[Array[Byte], String]("UsersTopic", msg)
}
.runWith(Producer.plainSink(producerSettings, kafkaProducer))
// #plainSinkWithProducer
// terminateWhenDone(done)
}
def terminateWhenDone(result: Future[Done]): Unit = {
result.onComplete {
case Failure(e) =>
system.log.error(e, e.getMessage)
system.terminate()
case Success(_) => system.terminate()
}
}
}
示例13: FlowProducerMain
//设置package包名称以及导入依赖的类
package com.example.producer
import akka.actor.ActorSystem
import akka.kafka.scaladsl.Producer
import akka.kafka.{ProducerMessage, ProducerSettings}
import akka.stream.ActorMaterializer
import akka.stream.scaladsl.{Sink, Source}
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.serialization.{ByteArraySerializer, StringSerializer}
object FlowProducerMain extends App {
implicit val system = ActorSystem("FlowProducerMain")
implicit val materializer = ActorMaterializer()
val producerSettings = ProducerSettings(system, new ByteArraySerializer, new StringSerializer)
.withBootstrapServers("localhost:9092")
val done = Source(1 to 10)
.map { n =>
// val partition = math.abs(n) % 2
val partition = 0
ProducerMessage.Message(new ProducerRecord[Array[Byte], String](
"topic1", partition, null, n.toString
), n)
}
.via(Producer.flow(producerSettings))
.map { result =>
val record = result.message.record
println(s"${record.topic}/${record.partition} ${result.offset}: ${record.value}" +
s"(${result.message.passThrough})")
result
}
.runWith(Sink.ignore)
}
示例14: CommitConsumerToFlowProducerMain
//设置package包名称以及导入依赖的类
package com.example.producer
import akka.actor.ActorSystem
import akka.kafka.scaladsl.{Consumer, Producer}
import akka.kafka.{ConsumerSettings, ProducerMessage, ProducerSettings, Subscriptions}
import akka.stream.ActorMaterializer
import akka.stream.scaladsl.Sink
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.serialization.{ByteArrayDeserializer, ByteArraySerializer, StringDeserializer, StringSerializer}
object CommitConsumerToFlowProducerMain extends App {
implicit val system = ActorSystem("CommitConsumerToFlowProducerMain")
implicit val materializer = ActorMaterializer()
val consumerSettings =
ConsumerSettings(system, new ByteArrayDeserializer, new StringDeserializer)
.withBootstrapServers("localhost:9092")
.withGroupId("CommitConsumerToFlowProducer")
.withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest")
val producerSettings = ProducerSettings(system, new ByteArraySerializer, new StringSerializer)
.withBootstrapServers("localhost:9092")
val done =
Consumer.committableSource(consumerSettings, Subscriptions.topics("topic1"))
.map { msg =>
println(s"topic1 -> topic2: $msg")
ProducerMessage.Message(new ProducerRecord[Array[Byte], String](
"topic2",
msg.record.value
), msg.committableOffset)
}
.via(Producer.flow(producerSettings))
.mapAsync(producerSettings.parallelism) { result =>
result.message.passThrough.commitScaladsl()
}
.runWith(Sink.ignore)
}
示例15: PlainSinkProducerMain
//设置package包名称以及导入依赖的类
package com.example.producer
import akka.actor.ActorSystem
import akka.kafka.ProducerSettings
import akka.kafka.scaladsl.Producer
import akka.stream.ActorMaterializer
import akka.stream.scaladsl.Source
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.serialization.{ByteArraySerializer, StringSerializer}
object PlainSinkProducerMain extends App {
implicit val system = ActorSystem("PlainSinkProducerMain")
implicit val materializer = ActorMaterializer()
val producerSettings = ProducerSettings(system, new ByteArraySerializer, new StringSerializer)
.withBootstrapServers("localhost:9092")
val done = Source(1 to 10)
.map(_.toString)
.map { elem =>
println(s"PlainSinkProducer produce: ${elem}")
new ProducerRecord[Array[Byte], String]("topic1", elem)
}
.runWith(Producer.plainSink(producerSettings))
}