本文整理汇总了Scala中org.apache.hadoop.fs.Path类的典型用法代码示例。如果您正苦于以下问题:Scala Path类的具体用法?Scala Path怎么用?Scala Path使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Path类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: HdfsUtils
//设置package包名称以及导入依赖的类
package com.appleeye.spark.utils
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.spark.SparkContext
object HdfsUtils {
def pathExists(path: String, sc: SparkContext): Boolean = {
val conf = sc.hadoopConfiguration
val fs = FileSystem.get(conf)
fs.exists(new Path(path))
}
def getFullPath(path:String, sc: SparkContext): String = {
val conf = sc.hadoopConfiguration
val fs = FileSystem.get(conf)
fs.getFileStatus(new Path(path)).getPath().toString
}
def getAllFiles(path:String, sc: SparkContext): Seq[String] = {
val conf = sc.hadoopConfiguration
val fs = FileSystem.get(conf)
val files = fs.listStatus(new Path(path))
files.map(_.getPath().toString)
}
}
示例2: HdfsClientConf
//设置package包名称以及导入依赖的类
package pub.ayada.scala.hdfsutils
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.fs.FileSystem
class HdfsClientConf private (val coreStiteXMLPath: String, val hdfsStiteXMLPath: String) {
private val conf = new Configuration();
conf.addResource(new Path(coreStiteXMLPath));
conf.addResource(new Path(hdfsStiteXMLPath));
def getHdfsClientConf(): Configuration = conf
def getHdpFileSystem(): FileSystem = FileSystem.get(conf);
}
object HdfsClientConf {
private var instance: HdfsClientConf = null
def getOneTimeInstance(coreStiteXMLPath: String, hdfsStiteXMLPath: String): Configuration = {
new HdfsClientConf(coreStiteXMLPath, hdfsStiteXMLPath).getHdfsClientConf()
}
def setSingltonInstance(coreStiteXMLPath: String, hdfsStiteXMLPath: String): Configuration = {
if (instance == null)
instance = new HdfsClientConf(coreStiteXMLPath, hdfsStiteXMLPath)
instance.getHdfsClientConf()
}
def getSingletonInstance(): HdfsClientConf = {
if (instance == null)
throw new NullPointerException("Instanciate HdfsClientConf before retriving")
instance
}
}
示例3: HDFS
//设置package包名称以及导入依赖的类
package org.mireynol.util
import java.io.{BufferedInputStream, OutputStreamWriter}
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileSystem, Path}
import org.slf4j.{Logger, LoggerFactory}
import scala.collection.mutable.ListBuffer
import scala.io.Source
object HDFS {
def log : Logger = LoggerFactory.getLogger( HDFS.getClass )
val hadoop : FileSystem = {
val conf = new Configuration( )
conf.set( "fs.defaultFS", "hdfs://localhost:9000" )
FileSystem.get( conf )
}
def readAndMap( path : String, mapper : ( String ) => Unit ) = {
if ( hadoop.exists( new Path( path ) ) ) {
val is = new BufferedInputStream( hadoop.open( new Path( path ) ) )
Source.fromInputStream( is ).getLines( ).foreach( mapper )
}
else {
// TODO - error logic here
}
}
def write( filename : String, content : Iterator[ String ] ) = {
val path = new Path( filename )
val out = new OutputStreamWriter( hadoop.create( path, false ) )
content.foreach( str => out.write( str + "\n" ) )
out.flush( )
out.close( )
}
def ls( path : String ) : List[ String ] = {
val files = hadoop.listFiles( new Path( path ), false )
val filenames = ListBuffer[ String ]( )
while ( files.hasNext ) filenames += files.next( ).getPath( ).toString( )
filenames.toList
}
def rm( path : String, recursive : Boolean ) : Unit = {
if ( hadoop.exists( new Path( path ) ) ) {
println( "deleting file : " + path )
hadoop.delete( new Path( path ), recursive )
}
else {
println( "File/Directory" + path + " does not exist" )
log.warn( "File/Directory" + path + " does not exist" )
}
}
def cat( path : String ) = Source.fromInputStream( hadoop.open( new Path( path ) ) ).getLines( ).foreach( println )
}
示例4: RedditVariationApp
//设置package包名称以及导入依赖的类
package org.apress.prospark
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{ Milliseconds, Seconds, StreamingContext }
import org.apache.hadoop.io.{ Text, LongWritable, IntWritable }
import org.apache.hadoop.fs.Path
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat
import org.apache.spark.streaming.dstream.DStream
import org.apache.hadoop.mapred.TextOutputFormat
import org.apache.hadoop.mapreduce.lib.output.{ TextOutputFormat => NewTextOutputFormat }
import org.apache.spark.streaming.dstream.PairDStreamFunctions
import org.apache.log4j.LogManager
import org.json4s._
import org.json4s.native.JsonMethods._
import java.text.SimpleDateFormat
import java.util.Date
object RedditVariationApp {
def main(args: Array[String]) {
if (args.length != 2) {
System.err.println(
"Usage: RedditVariationApp <appname> <input_path>")
System.exit(1)
}
val Seq(appName, inputPath) = args.toSeq
val LOG = LogManager.getLogger(this.getClass)
val conf = new SparkConf()
.setAppName(appName)
.setJars(SparkContext.jarOfClass(this.getClass).toSeq)
val ssc = new StreamingContext(conf, Seconds(1))
LOG.info("Started at %d".format(ssc.sparkContext.startTime))
val comments = ssc.fileStream[LongWritable, Text, TextInputFormat](inputPath, (f: Path) => true, newFilesOnly = false).map(pair => pair._2.toString)
val merged = comments.union(comments)
val repartitionedComments = comments.repartition(4)
val rddMin = comments.glom().map(arr =>
arr.minBy(rec => ((parse(rec) \ "created_utc").values.toString.toInt)))
ssc.start()
ssc.awaitTermination()
}
}
示例5: list
//设置package包名称以及导入依赖的类
package uk.co.odinconsultants.bitcoin.integration.hadoop
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.hdfs.DistributedFileSystem
import uk.co.odinconsultants.bitcoin.core.Logging
import uk.co.odinconsultants.bitcoin.integration.hadoop.HadoopForTesting.hdfsCluster
import scala.collection.mutable.ArrayBuffer
trait MiniHadoopClusterRunning extends Logging {
val distributedFS: DistributedFileSystem = hdfsCluster.getFileSystem
val conf: Configuration = HadoopForTesting.conf
val dir = s"/${this.getClass.getSimpleName}/"
def list(path: String): List[Path] = {
info(s"Looking in $path")
val files = distributedFS.listFiles(new Path(path), true)
val allPaths = ArrayBuffer[Path]()
while (files.hasNext) {
val file = files.next
allPaths += file.getPath
}
allPaths.toList
}
def copyToHdfs(inputFile: Path): Path = {
val fromFile = inputFile.getName
distributedFS.mkdirs(new Path(dir))
val toFile = new Path(dir + fromFile)
info(s"Copying '$fromFile' to '$toFile' (${toFile.getName})")
distributedFS.copyFromLocalFile(false, true, inputFile, toFile)
toFile
}
def localFile(local: String): Path = {
val classLoader = getClass.getClassLoader
val localFQN = classLoader.getResource(local).getFile
new Path(localFQN)
}
}
示例6: Sentiment140Downloader
//设置package包名称以及导入依赖的类
package com.aluxian.tweeather.scripts
import java.net.URL
import java.util.zip.ZipInputStream
import org.apache.hadoop.fs.Path
import org.apache.spark.Logging
object Sentiment140Downloader extends Script with Logging {
val downloadUrl = "http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip"
override def main(args: Array[String]) {
super.main(args)
logInfo(s"Downloading sentiment140 dataset from $downloadUrl")
val zip = new ZipInputStream(new URL(downloadUrl).openStream())
val buffer = new Array[Byte](4 * 1024)
Stream.continually(zip.getNextEntry)
.takeWhile(_ != null)
.foreach { entry =>
val fileName = entry.getName
val out = hdfs.create(new Path(s"tw/sentiment/140/downloaded/$fileName"))
logInfo(s"Downloading $fileName")
Stream.continually(zip.read(buffer))
.takeWhile(_ != -1)
.foreach { count =>
out.write(buffer, 0, count)
}
out.close()
}
zip.close()
logInfo("Downloading finished")
sc.stop()
}
}
示例7: BenchmarkYarnPrepare
//设置package包名称以及导入依赖的类
package com.microsoft.spark.perf
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileSystem, Path}
object BenchmarkYarnPrepare {
private def uploadFile(localPath: String, remoteWorkingDir: String): Unit = {
new Path(remoteWorkingDir).getFileSystem(new Configuration()).
copyFromLocalFile(new Path(localPath), new Path(remoteWorkingDir))
}
private def createRemoteWorkingDir(
remoteWorkingDir: String,
localJarPath: String,
sparkSubmitParamsPath: String,
benchmarkParamsPath: String): Unit = {
uploadFile(localJarPath, remoteWorkingDir + "/spark-benchmark.jar")
uploadFile(sparkSubmitParamsPath, remoteWorkingDir + "/spark.conf")
uploadFile(benchmarkParamsPath, remoteWorkingDir + "/benchmark.conf")
}
def main(args: Array[String]): Unit = {
val remoteWorkingDir = args(0)
val localJarPath = args(1)
val sparkSubmitParamsFilePath = args(2)
val benchmarkParamsFilePath = args(3)
createRemoteWorkingDir(remoteWorkingDir, localJarPath, sparkSubmitParamsFilePath,
benchmarkParamsFilePath)
}
}
示例8: AvroParquetWriterFn
//设置package包名称以及导入依赖的类
package io.eels.component.parquet.avro
import com.sksamuel.exts.Logging
import io.eels.component.parquet.ParquetWriterConfig
import org.apache.avro.Schema
import org.apache.avro.generic.GenericRecord
import org.apache.hadoop.fs.Path
import org.apache.parquet.avro.AvroParquetWriter
import org.apache.parquet.hadoop.{ParquetFileWriter, ParquetWriter}
object AvroParquetWriterFn extends Logging {
def apply(path: Path, avroSchema: Schema): ParquetWriter[GenericRecord] = {
val config = ParquetWriterConfig()
AvroParquetWriter.builder[GenericRecord](path)
.withSchema(avroSchema)
.withCompressionCodec(config.compressionCodec)
.withPageSize(config.pageSize)
.withRowGroupSize(config.blockSize)
.withDictionaryEncoding(config.enableDictionary)
.withWriteMode(ParquetFileWriter.Mode.CREATE)
.withValidation(config.validating)
.build()
}
}
示例9: FileUtils
//设置package包名称以及导入依赖的类
package com.asto.dmp.xxx.util
import com.asto.dmp.xxx.base.Constants
import com.asto.dmp.ycd.base.Constants
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.spark.Logging
import org.apache.spark.rdd.RDD
object FileUtils extends Logging {
private val conf = new Configuration()
conf.set("fs.defaultFS", Constants.Hadoop.DEFAULT_FS)
conf.set("mapreduce.jobtracker.address", Constants.Hadoop.JOBTRACKER_ADDRESS)
def deleteFilesInHDFS(paths: String*) = {
paths.foreach { path =>
val filePath = new Path(path)
val HDFSFilesSystem = filePath.getFileSystem(new Configuration())
if (HDFSFilesSystem.exists(filePath)) {
logInfo(s"?????$filePath")
HDFSFilesSystem.delete(filePath, true)
}
}
}
def saveAsTextFile[T <: Product](rdd: RDD[T], savePath: String) = {
deleteFilesInHDFS(savePath)
logInfo(s"?${savePath}?????")
rdd.map(_.productIterator.mkString(Constants.OutputPath.SEPARATOR)).coalesce(1).saveAsTextFile(savePath)
}
def saveAsTextFile(text: String, savePath: String) = {
deleteFilesInHDFS(savePath)
logInfo(s"?${savePath}?????")
val out = FileSystem.get(conf).create(new Path(savePath))
out.write(text.getBytes)
out.flush()
out.close()
}
}
示例10: FrequencyMapReducer
//设置package包名称以及导入依赖的类
package com.argcv.cse8803.mapreducebasic
import com.argcv.valhalla.console.ColorForConsole._
import com.argcv.valhalla.utils.Awakable
import org.apache.hadoop.fs.Path
import org.apache.hadoop.io.{IntWritable, Text}
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
object FrequencyMapReducer extends Awakable {
def main(args: Array[String]): Unit = {
// create a hadoop job and set main class
val job = Job.getInstance()
job.setJarByClass(FrequencyMapReducer.getClass)
job.setJobName("Frequency")
// set the input & output path
FileInputFormat.addInputPath(job, new Path(args.head))
FileOutputFormat.setOutputPath(job, new Path(s"${args(1)}-${System.currentTimeMillis()}"))
// set mapper & reducer
job.setMapperClass(FrequencyMapper.instance)
job.setReducerClass(FrequencyReducer.instance)
// specify the type of the output
job.setOutputKeyClass(new Text().getClass)
job.setOutputValueClass(new IntWritable().getClass)
// run
logger.info(s"job finished, status [${if (job.waitForCompletion(true)) "OK".withColor(GREEN) else "FAILED".withColor(RED)}]")
}
}
示例11: Converter
//设置package包名称以及导入依赖的类
package com.dataoptimo.imgprocessing.convert
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.io.Text
import org.apache.hadoop.io.BytesWritable
import org.apache.hadoop.fs.{Path, FileSystem}
import org.apache.hadoop.io.IOUtils
import org.apache.hadoop.io.SequenceFile
import java.io.IOException
import java.lang.IllegalArgumentException
class Converter(conf: Configuration) {
def imageToSequence(srcPath: String, dstPath: String){
try {
val fs = FileSystem.get(conf);
val inPath = new Path(srcPath);
val outPath = new Path(dstPath);
val key = new Text();
val value = new BytesWritable();
val in = fs.open(inPath);
val buffer = new Array[Byte](in.available())
in.read(buffer);
var writer = SequenceFile.createWriter(fs, conf, outPath, key.getClass(),value.getClass());
writer.append(new Text(inPath.getName()), new BytesWritable(buffer));
IOUtils.closeStream(writer);
}
catch {
case io: IOException => println(io.getMessage)
case illegalArgument: IllegalArgumentException => println(illegalArgument.getMessage)
}
}
}
示例12: HdfsWriteTest
//设置package包名称以及导入依赖的类
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{Path, FileSystem}
import org.scalatest._
class HdfsWriteTest extends FlatSpec with Matchers {
"Hello" should "have tests" in {
def write(uri: String, filePath: String, data: Array[Byte]) = {
// System.setProperty("HADOOP_USER_NAME", "Mariusz")
val path = new Path(filePath)
val conf = new Configuration()
conf.set("fs.defaultFS", uri)
val fs = FileSystem.get(conf)
val os = fs.create(path)
os.write(data)
fs.close()
}
write("hdfs://0.0.0.0:19000", "hdfs://0.0.0.0:19000/user/cloudera/test.txt", "Hello World".getBytes)
}
}
示例13: main
//设置package包名称以及导入依赖的类
package io.github.qf6101.topwords
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.spark.sql.SparkSession
def main(args: Array[String]) {
// setup spark session
val spark = SparkSession.builder().master("local[1]").appName(this.getClass.toString).getOrCreate()
val inputFile = "test_data/story_of_stone.txt"
val outputFile = "test_data/test_output"
val files = FileSystem.get(spark.sparkContext.hadoopConfiguration)
if (files.exists(new Path(outputFile))) files.delete(new Path(outputFile), true)
val corpus = spark.sparkContext.textFile(inputFile)
new TopWORDS(
tauL = 10,
tauF = 5,
textLenThld = 2000,
useProbThld = 1E-8,
numIterations = 10,
convergeTol = 1E-3,
wordBoundaryThld = 0.0)
.run(corpus, outputFile + "/dictionary", outputFile + "/segmented_texts")
}
}
示例14: ConvertsSpec
//设置package包名称以及导入依赖的类
package com.newegg.eims.DataPorter.HDFS
import java.io.File
import com.newegg.eims.DataPorter.HDFS.Converts._
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.security.UserGroupInformation
import org.scalatest.{FlatSpec, Matchers}
class ConvertsSpec extends FlatSpec with Matchers {
val currentDir = new File(".").getCanonicalPath + File.separator + "target" + File.separator
"hdfs" should "can do with hadoop user" in {
var test = 1
new File(currentDir + "test.txt").doAs(UserGroupInformation.createRemoteUser("vq83"), f => test = 2)
test should be(2)
}
it should "no copy file when not exists file path" in {
new File(currentDir + "test.txt").copyToHDFS(new Path(currentDir + "test1.txt"), new Configuration())
new File(currentDir + "test1.txt").exists() shouldBe false
}
it should "copy file when exists file path" in {
val f = new File(currentDir + "test.txt")
f.createNewFile()
f.exists() shouldBe true
new File(currentDir + "test.txt").copyToHDFS(new Path(currentDir + "test1.txt"), new Configuration())
val f2 = new File(currentDir + "test1.txt")
f2.exists() shouldBe true
f.delete() shouldBe true
f2.delete() shouldBe true
}
}
示例15: saveParquet
//设置package包名称以及导入依赖的类
package com.newegg.eims.DataPorter.Parquet
import com.newegg.eims.DataPorter.Base._
import org.apache.hadoop.fs.Path
import org.apache.hadoop.mapred.JobConf
import parquet.hadoop.ParquetOutputFormat
import parquet.hadoop.metadata.CompressionCodecName
def saveParquet(path: String, hadoopConf: JobConf = new JobConf(),
compressionCodecName: CompressionCodecName = CompressionCodecName.SNAPPY): Path = {
hadoopConf.set(ParquetOutputFormat.COMPRESSION, compressionCodecName.name())
val rows = set.toDataRowSet.toRowIterator
val schema = rows.getSchema
val writer = ParquetFileFormat.prepareWrite(schema, new Path(path), hadoopConf)
try {
while (rows.hasNext) {
val row = rows.next()
writer.write(row)
}
} finally {
writer.close()
}
new Path(path)
}
}
}