当前位置: 首页>>代码示例>>Scala>>正文


Scala StringDecoder类代码示例

本文整理汇总了Scala中kafka.serializer.StringDecoder的典型用法代码示例。如果您正苦于以下问题:Scala StringDecoder类的具体用法?Scala StringDecoder怎么用?Scala StringDecoder使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了StringDecoder类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: StreamingApp

//设置package包名称以及导入依赖的类
package spark.test

import data.processing.avro.AvroDecoder
import kafka.serializer.StringDecoder
import kafka.serializer.DefaultDecoder
import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka.KafkaUtils


object StreamingApp {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("Simple Streaming Application")
    val ssc = new StreamingContext(conf, Seconds(1))

    val topicsSet = "test".split(",").toSet
    val kafkaParams = Map[String, String]("metadata.broker.list" -> "localhost:9092")

    val directKafkaStream = KafkaUtils.createDirectStream[String, Array[Byte], StringDecoder, DefaultDecoder](
      ssc, kafkaParams, topicsSet
    )



    directKafkaStream.foreachRDD(rdd =>
      rdd.foreachPartition(partitionOfRecords => {
        val avroDecoder = new AvroDecoder("/event-record.json")
        partitionOfRecords.map(m => (m._1, avroDecoder.decode(m._2))).foreach(m => println(m))
    }))


    ssc.start()
    ssc.awaitTermination()
  }
} 
开发者ID:ipogudin,项目名称:data-processing-examples,代码行数:36,代码来源:StreamingApp.scala

示例2: KafkaStreaming

//设置package包名称以及导入依赖的类
package org.myorganization.spark.streaming


import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.streaming.{StreamingContext, Seconds}
import org.apache.spark.streaming.kafka._
import kafka.serializer.StringDecoder



object KafkaStreaming {
    def main(args: Array[String]): Unit = {
        val (batchDuration, topics, bootstrapServers) = getParams(args)

        val conf = new SparkConf().setAppName("gpKafkaStreaming")
        val sc   = new SparkContext(conf)
        val ssc  = new StreamingContext(sc, Seconds(batchDuration))

        val topicsSet   = topics.split(",").toSet
        val kafkaParams = Map[String, String]("bootstrap.servers" -> bootstrapServers, "auto.offset.reset" -> "smallest")
        val messages    = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)

        val data                 = messages.map(_._2)
        val loggerSerializerLogs = data.map(_.split("""\s+"""))
                                       .filter(x => x.length > 6)
                                       .map(x => (x(0), x(6)))
                                       .filter(filterLogLines)
                                       .map(x => x._1)
        val logCounts            = loggerSerializerLogs.map(x => (x, 1L)).reduceByKey(_ + _)
        logCounts.print(10)

        ssc.start()
        ssc.awaitTermination()
    }


    def filterLogLines(line: Tuple2[String, String]): Boolean = {
        val pattern = """logger.+"""
        line._2.matches(pattern)
    }


    def getParams(args: Array[String]): Tuple3[Int, String, String] = {
        if (args.length !=3 ) {
            System.err.println(s"""
                |Usage: spark-kafka.sh <sampling-period> <topics> <bootstrap-servers>
                |  <sampling-period>    is the duration of each batch (in seconds)
                |  <topics>             is a list of one or more kafka topics to consume from
                |  <bootstrap-servers>  is a list of one or more Kafka bootstrap servers
                |
                """.stripMargin)
            System.exit(1)
        }
        Tuple3[Int, String, String](args(0).toInt, args(1), args(2))
    }
} 
开发者ID:gpapag,项目名称:spark-streaming-kafka,代码行数:57,代码来源:KafkaStreaming.scala

示例3: DirectKafkaWordCount

//设置package包名称以及导入依赖的类
package example.spark

import kafka.serializer.StringDecoder

import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.SparkConf


object DirectKafkaWordCount {
  def main(args: Array[String]) {
    if (args.length < 2) {
      System.err.println(s"""
        |Usage: DirectKafkaWordCount <brokers> <topics>
        |  <brokers> is a list of one or more Kafka brokers
        |  <topics> is a list of one or more kafka topics to consume from
        |
        """.stripMargin)
      System.exit(1)
    }

    val Array(brokers, topics) = args

    // Create context with 2 second batch interval
    //no need to create spark context...
    val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount").setMaster("local[4]")
    val ssc = new StreamingContext(sparkConf, Seconds(2))

    // Create direct kafka stream with brokers and topics
    val topicsSet = topics.split(",").toSet
    val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)
    val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)

    // Get the lines, split them into words, count the words and print
    val lines = messages.map(_._2)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
    wordCounts.print()

    // Start the computation
    ssc.start()
    ssc.awaitTermination()
  }
} 
开发者ID:alonsoir,项目名称:awesome-recommendation-engine,代码行数:45,代码来源:DirectKafkaWordCount.scala

示例4: createStream

//设置package包名称以及导入依赖的类
package it.agilelab.bigdata.wasp.consumers.readers

import it.agilelab.bigdata.wasp.core.WaspSystem
import it.agilelab.bigdata.wasp.core.WaspSystem._
import it.agilelab.bigdata.wasp.core.kafka.CheckOrCreateTopic
import it.agilelab.bigdata.wasp.core.logging.WaspLogger
import it.agilelab.bigdata.wasp.core.models.{DefaultConfiguration, TopicModel}
import it.agilelab.bigdata.wasp.core.utils.{AvroToJsonUtil, ConfigManager, JsonToByteArrayUtil}
import kafka.serializer.{DefaultDecoder, StringDecoder}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.kafka.KafkaUtils



  //TODO: check warning (not understood)
  def createStream(group: String, topic: TopicModel)(implicit ssc: StreamingContext): DStream[String] = {
    val kafkaConfig = ConfigManager.getKafkaConfig

    val kafkaConfigMap: Map[String, String] = Map(
      "zookeeper.connect" -> kafkaConfig.zookeeper.toString,
      "zookeeper.connection.timeout.ms" -> kafkaConfig.zookeeper.timeout.getOrElse(DefaultConfiguration.timeout).toString
    )


    if (??[Boolean](WaspSystem.getKafkaAdminActor, CheckOrCreateTopic(topic.name, topic.partitions, topic.replicas))) {
      val receiver = KafkaUtils.createStream[String, Array[Byte], StringDecoder, DefaultDecoder](
        ssc,
        kafkaConfigMap + ("group.id" -> group),
        Map(topic.name -> 3),
        StorageLevel.MEMORY_AND_DISK_2
      )

      topic.topicDataType match {
        case "avro" => receiver.map(x => (x._1, AvroToJsonUtil.avroToJson(x._2))).map(_._2)
        case "json" => receiver.map(x => (x._1, JsonToByteArrayUtil.byteArrayToJson(x._2))).map(_._2)
        case _ => receiver.map(x => (x._1, AvroToJsonUtil.avroToJson(x._2))).map(_._2)
      }

    } else {
      logger.error(s"Topic not found on Kafka: $topic")
      throw new Exception(s"Topic not found on Kafka: $topic")
    }
  }
} 
开发者ID:agile-lab-dev,项目名称:wasp,代码行数:47,代码来源:KafkaReader.scala

示例5: DirectKafkaWordCount

//设置package包名称以及导入依赖的类
package example.spark

import kafka.serializer.StringDecoder

import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.SparkConf


object DirectKafkaWordCount {
  def main(args: Array[String]) {
    if (args.length < 2) {
      System.err.println(s"""
        |Usage: DirectKafkaWordCount <brokers> <topics>
        |  <brokers> is a list of one or more Kafka brokers
        |  <topics> is a list of one or more kafka topics to consume from
        |
        """.stripMargin)
      System.exit(1)
    }

    val Array(brokers, topics) = args

    // Create context with 2 second batch interval
    val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount").setMaster("local[4]")
    val ssc = new StreamingContext(sparkConf, Seconds(2))

    // Create direct kafka stream with brokers and topics
    val topicsSet = topics.split(",").toSet
    val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)
    val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)

    // Get the lines, split them into words, count the words and print
    val lines = messages.map(_._2)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
    wordCounts.print()

    // Start the computation
    ssc.start()
    ssc.awaitTermination()
  }
} 
开发者ID:alonsoir,项目名称:hello-kafka-twitter-scala,代码行数:44,代码来源:DirectKafkaWordCount.scala

示例6: SparkJob

//设置package包名称以及导入依赖的类
package de.codecentric.dcos_intro.spark


import de.codecentric.dcos_intro.{Tweet, TweetDecoder}
import kafka.serializer.StringDecoder
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import com.datastax.spark.connector.streaming._


object SparkJob {

  def main(args: Array[String]) {

    val consumerTopic = args(0)
    val sparkConf = new SparkConf()
      .setAppName(getClass.getName)
      .set("spark.cassandra.connection.host", s"${args(1)}")
      .set("spark.cassandra.connection.port", s"${args(2)}")
    val consumerProperties = Map("bootstrap.servers" -> args(3), "auto.offset.reset" -> "smallest")
    val ssc = new StreamingContext(sparkConf, Seconds(1))

    val kafkaStream = KafkaUtils.createDirectStream[String, Tweet, StringDecoder, TweetDecoder](
      ssc,
      consumerProperties,
      Set(consumerTopic)
    )

    kafkaStream.map(tuple => tuple._2).saveToCassandra("dcos", "tweets")

    ssc.start()
    ssc.awaitTermination()
    ssc.stop()
  }
} 
开发者ID:ftrossbach,项目名称:intro-to-dcos,代码行数:37,代码来源:SparkJob.scala

示例7: ApplicationContext

//设置package包名称以及导入依赖的类
package com.playing.contexts

import com.playing.utils.SparkConfig
import kafka.serializer.StringDecoder
import org.apache.spark.streaming.kafka.KafkaUtils


object ApplicationContext {

  def main(args: Array[String]): Unit = {
    val Array(brokers, topics) = args

    // Create context with 2 second batch interval
    val ssc = SparkConfig.ssc

    // Create direct kafka stream with brokers and topics
    val topicsSet = topics.split(",").toSet
    val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)
    val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
      ssc, kafkaParams, topicsSet)

    // Get the lines, split them into words, count the words and print
    val lines = messages.map(_._2)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
    wordCounts.print()

    // Start the computation
    ssc.start()
    ssc.awaitTermination()
  }

} 
开发者ID:anand-singh,项目名称:playing-spark-streaming,代码行数:34,代码来源:ApplicationContext.scala

示例8: KafkaSourcePythonHelper

//设置package包名称以及导入依赖的类
package com.ippontech.kafka

import com.ippontech.kafka.stores.{OffsetsStore, ZooKeeperOffsetsStore}
import kafka.serializer.StringDecoder
import org.apache.spark.streaming.api.java.{JavaDStream, JavaStreamingContext}

object KafkaSourcePythonHelper {

  def kafkaStream(jssc: JavaStreamingContext, brokers: String, offsetsStore: OffsetsStore,
                  topic: String): JavaDStream[(String, String)] = {
    val dstream = KafkaSource.kafkaStream[String, String, StringDecoder, StringDecoder](jssc.ssc, brokers, offsetsStore, topic)
    val jdstream = new JavaDStream(dstream)
    jdstream
  }

  def kafkaStream(jssc: JavaStreamingContext, brokers: String, zkHosts: String, zkPath: String,
                  topic: String): JavaDStream[(String, String)] = {
    val offsetsStore = new ZooKeeperOffsetsStore(zkHosts, zkPath)
    val dstream = KafkaSource.kafkaStream[String, String, StringDecoder, StringDecoder](jssc.ssc, brokers, offsetsStore, topic)
    val jdstream = new JavaDStream(dstream)
    jdstream
  }

} 
开发者ID:ippontech,项目名称:spark-kafka-source,代码行数:25,代码来源:KafkaSourcePythonHelper.scala

示例9: KafkaDStreamSource

//设置package包名称以及导入依赖的类
package org.yuboxu.spark

import kafka.serializer.{StringDecoder, DefaultDecocder}
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.kafka.KafkaUtils

class KafkaDStreamSource(config: Map[String, String]) {
  def createSource(ssc: StreamingContext, topic: String): DStream[KafkaPayload] = {
    val kafkaParams = config
    val kafkaTopics = Set(topic)

    KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
      // spark streaming context
      ssc,
      // kafka configuration parameters
      kafkaParams,
      // names of the topics to consume
      kafkaTopics).map(dstream => KafkaPayload(Option(dstream._1), dstream._2)
    )
  }
}

object KafkaDStreamSource {
  def apply(config: Map[String, String]): KafkaDStreamSource = new KafkaDStreamSource(config)
} 
开发者ID:CCA1,项目名称:Web-Popularity-Application,代码行数:27,代码来源:KafkaDStreamSource.scala


注:本文中的kafka.serializer.StringDecoder类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。