本文整理汇总了Scala中java.util.HashMap类的典型用法代码示例。如果您正苦于以下问题:Scala HashMap类的具体用法?Scala HashMap怎么用?Scala HashMap使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了HashMap类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: MultiMap
//设置package包名称以及导入依赖的类
package com.protegra_ati.agentservices.store.util
import java.util.HashMap
class MultiMap[K, V] extends java.io.Serializable{
private var _map = new HashMap[K, List[V]]()
def add(key:K, value:V) = {
val list:List[V] = if (_map.get(key) == null) List[V]() else _map.get(key)
_map.put(key, list ++ List(value))
}
def remove(key:K, value:V) {
if (_map.get(key) != null) {
val sublist = _map.get(key).filterNot(x => x == value)
_map.put(key, sublist)
}
}
def get(key:K):List[V] = {
_map.get(key)
}
def hasValue(key:K, value:V):Boolean = {
val values = get(key)
(values != null && values.contains(value))
}
}
示例2: InMemoryHeap
//设置package包名称以及导入依赖的类
package offheap
import java.util.HashMap
class InMemoryHeap[T <: Node[T]] extends Heap[T] {
val data = new HashMap[Long, T]
var next_id = 0
def append(node : T, reserve : Int) : Long = {
data.put(next_id, node)
val result = next_id
next_id += 1
next_id
}
def write(pointer : Long, node : T) : Unit = {
data.put(pointer, node)
}
def read(pointer : Long) : T =
data.get(pointer)
def commit() = {}
}
示例3: TweetCollect
//设置package包名称以及导入依赖的类
package info.matsumana.flink
import java.util.regex.Pattern
import java.util.{HashMap, Properties}
import com.fasterxml.jackson.databind.ObjectMapper
import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010
import org.apache.flink.streaming.connectors.twitter.TwitterSource
import org.apache.flink.streaming.util.serialization.SimpleStringSchema
object TweetCollect {
val DELETED_TWEET_PATTERN = Pattern.compile("""^\{"delete":\{""")
// ????
val TARGET_TWEET_PATTERN = Pattern.compile("^.*[\u3040-\u3096]+.*$")
val mapper = new ObjectMapper()
def main(args: Array[String]): Unit = {
val params = ParameterTool.fromPropertiesFile(args(0))
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.enableCheckpointing(60000)
// source (twitter)
val twitterProps = new Properties()
twitterProps.setProperty(TwitterSource.CONSUMER_KEY, params.get("consumer_key", ""))
twitterProps.setProperty(TwitterSource.CONSUMER_SECRET, params.get("consumer_secret", ""))
twitterProps.setProperty(TwitterSource.TOKEN, params.get("token", ""))
twitterProps.setProperty(TwitterSource.TOKEN_SECRET, params.get("token_secret", ""))
val sourceStream = env.addSource(new TwitterSource(twitterProps))
// sink (kafka)
val kafkaProps = new Properties()
kafkaProps.setProperty("bootstrap.servers", params.get("bootstrap.servers", "localhost:9092"))
val topic = params.get("topic", "twitter")
val sink = new FlinkKafkaProducer010[String](
topic,
new SimpleStringSchema,
kafkaProps)
// stream processing
sourceStream
.filter(!DELETED_TWEET_PATTERN.matcher(_).matches())
.map(mapper.readValue(_, classOf[HashMap[String, Object]]))
.filter(m => {
val text = m.get("text")
text != null && TARGET_TWEET_PATTERN.matcher(String.valueOf(text)).matches()
})
.map(mapper.writeValueAsString(_))
.addSink(sink)
env.execute("TweetCollect")
}
}
示例4: Marker
//设置package包名称以及导入依赖的类
import java.util.HashMap
class Marker private (val color: String) {
println(s"Creating ${toString}")
override def toString : String = "marker color " + color
}
object Marker {
private var markers : HashMap[String, Marker] = new HashMap[String, Marker]
def getMarker(color: String) : Marker = {
if (!markers.containsKey(color)) {
markers.put(color, new Marker(color))
}
markers.get(color)
}
}
示例5: TestUtils
//设置package包名称以及导入依赖的类
package org.apache.spark.sql
import java.nio.ByteBuffer
import java.util.{ArrayList, HashMap}
import scala.util.Random
object TestUtils {
def generateRandomByteBuffer(rand: Random, size: Int): ByteBuffer = {
val bb = ByteBuffer.allocate(size)
val arrayOfBytes = new Array[Byte](size)
rand.nextBytes(arrayOfBytes)
bb.put(arrayOfBytes)
}
def generateRandomMap(rand: Random, size: Int): java.util.Map[String, Int] = {
val jMap = new HashMap[String, Int]()
for (i <- 0 until size) {
jMap.put(rand.nextString(5), i)
}
jMap
}
def generateRandomArray(rand: Random, size: Int): ArrayList[Boolean] = {
val vec = new ArrayList[Boolean]()
for (i <- 0 until size) {
vec.add(rand.nextBoolean())
}
vec
}
}
示例6: KafkaWordCountProducer
//设置package包名称以及导入依赖的类
package com.jcode.spark.streaming
import java.util.HashMap
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
object KafkaWordCountProducer {
def main(args: Array[String]) {
if (args.length < 4) {
System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " +
"<messagesPerSec> <wordsPerMessage>")
// System.exit(1)
}
// val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args
val Array(brokers, topic, messagesPerSec, wordsPerMessage) = Array("192.168.1.234:9092","sparkStreamingTest","1","5")
// Zookeeper connection properties
val props = new HashMap[String, Object]()
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String, String](props)
// Send some messages
while(true) {
(1 to messagesPerSec.toInt).foreach { messageNum =>
val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString)
.mkString(" ")
val message = new ProducerRecord[String, String](topic, null, str)
producer.send(message)
}
Thread.sleep(1000)
}
}
}
// scalastyle:on println
示例7: Macro
//设置package包名称以及导入依赖的类
package alexsmirnov.pbconsole
import java.util.HashMap
import org.apache.commons.lang3.text.StrSubstitutor
import scala.io.Source
import scalafx.beans.property.StringProperty
import javafx.util.Callback
import javafx.beans.Observable
class Macro {
val nameProperty = StringProperty("")
def name = nameProperty.get
def name_=(v: String) = nameProperty.update(v)
val descriptionProperty = StringProperty("")
def description = descriptionProperty.get
def description_=(v: String) = descriptionProperty.update(v)
val contentProperty = StringProperty("")
def content = contentProperty.get
def content_=(v: String) = contentProperty.update(v)
}
object Macro {
import Settings._
object extractor extends Callback[Macro,Array[Observable]]{
def call(m: Macro) = Array(m.nameProperty,m.descriptionProperty,m.contentProperty)
}
def apply(name: String,description: String,content: String) = {
val m = new Macro
m.name = name
m.description = description
m.content = content
m
}
def prepare(content: String,conf: Settings): Iterator[String] = {
val values = new HashMap[String,Any]
values.put(BED_W, conf.bedWidth())
values.put(BED_D, conf.bedDepth())
values.put(H, conf.height())
values.put(Z_OFFSET, conf.zOffset())
val sub = new StrSubstitutor(values)
val src = Source.fromString(sub.replace(content))
src.getLines()
}
}