本文整理汇总了Scala中grizzled.slf4j.Logger类的典型用法代码示例。如果您正苦于以下问题:Scala Logger类的具体用法?Scala Logger怎么用?Scala Logger使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Logger类的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。
示例1: PublishedStoryDAOImpl
//设置package包名称以及导入依赖的类
package io.soheila.cms.daos
import javax.inject.Inject
import grizzled.slf4j.Logger
import io.soheila.cms.daos.exceptions.DAOException
import io.soheila.cms.entities.Story
import play.api.libs.json.Json
import play.modules.reactivemongo.ReactiveMongoApi
import reactivemongo.play.json.collection.JSONCollection
import scala.concurrent.{ ExecutionContext, Future }
class PublishedStoryDAOImpl @Inject() (override val reactiveMongoApi: ReactiveMongoApi)(implicit override val ec: ExecutionContext) extends StoryDAOImpl(reactiveMongoApi) {
private val logger = Logger[this.type]
override def collection: Future[JSONCollection] = reactiveMongoApi.database.map(_.collection[JSONCollection]("published_stories"))
override def findAndUpdateLatest(story: Story, upsert: Boolean): Future[Either[DAOException, Option[Story]]] = {
findAndUpdateByCriteria(Json.obj("uuid" -> story.uuid.get), story, upsert)
.map {
case Left(err) => Left(DAOException(err.getMessage, err))
case Right(res) => Right(res)
}
}
}
示例2: Of
//设置package包名称以及导入依赖的类
package org.leialearns.crystallize.util
import java.io.{FileInputStream, File}
import java.util.logging.LogManager
import grizzled.slf4j.Logger
trait LoggingConfiguration {
val logConfigFile = "logging.properties"
val current = new File(".", logConfigFile)
val logConfigStream = if (current.exists()) new FileInputStream(current) else classOf[LoggingConfiguration].getResourceAsStream("/" + logConfigFile)
val logManager: LogManager = LogManager.getLogManager
logManager.readConfiguration(logConfigStream)
def getLogger(category: Class[_]): Logger = {
Logger(category)
}
}
示例3: DataSourceParams
//设置package包名称以及导入依赖的类
package com.lavsurgut.vizr.engine
import grizzled.slf4j.Logger
import org.apache.predictionio.controller.{EmptyActualResult, EmptyEvaluationInfo, PDataSource, Params}
import org.apache.predictionio.data.storage.Event
import org.apache.predictionio.data.store.PEventStore
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
case class DataSourceParams(appName: String, entityType: String) extends Params
class DataSource(val dsp: DataSourceParams)
extends PDataSource[TrainingData,
EmptyEvaluationInfo, Query, EmptyActualResult] {
@transient lazy val logger = Logger[this.type]
override
def readTraining(sc: SparkContext): TrainingData = {
// read all events of EVENT involving ENTITY_TYPE and TARGET_ENTITY_TYPE
val eventsRDD: RDD[Event] = PEventStore.find(
appName = dsp.appName,
entityType = Some(dsp.entityType),
eventNames = Some(List("data-upload")) // ,
// targetEntityType = Some(Some("TARGET_ENTITY_TYPE"))
)(sc)
new TrainingData(eventsRDD)
}
}
class TrainingData(
val events: RDD[Event]
) extends Serializable {
override def toString = {
s"events: [${events.count()}] (${events.take(2).toList}...)"
}
}
示例4: nearPoint
//设置package包名称以及导入依赖的类
package io.soheila.commons.geospatials
import grizzled.slf4j.Logger
import io.soheila.commons.crud.MongoCRUDDAO
import io.soheila.commons.entities.{ Locatable, Page }
import io.soheila.commons.exceptions.{ ErrorCode, MongoDAOException, MongoExceptionBuilder }
import play.api.libs.json.{ Json, Reads }
import play.modules.reactivemongo.json._
import reactivemongo.api.indexes.Index
import reactivemongo.api.indexes.IndexType.Geo2DSpherical
import reactivemongo.api.{ Cursor, ReadPreference }
import scala.concurrent.{ ExecutionContext, Future }
trait Geospatial[T <: Locatable, ID] {
self: MongoCRUDDAO[T, ID] =>
private val logger = Logger[this.type]
lazy val LocationField = "coordinate"
lazy val geo2DSphericalIndex = Index(Seq((LocationField, Geo2DSpherical)), Some("geo2DSphericalIdx"))
def nearPoint(lon: Double, lat: Double, minDistance: Double = 1, maxDistance: Double = 10000, page: Int = 0, limit: Int = 100, readPreference: ReadPreference = ReadPreference.primaryPreferred)(implicit ec: ExecutionContext, reads: Reads[T]): Future[Either[MongoDAOException, Page[T]]] = {
val offset = page * limit
val totalCount = collection.flatMap(_.count())
val searchResult = collection.flatMap(_.find(
Json.obj(
LocationField -> Json.toJson(Json.obj(
"$geoNear" -> Json.toJson(Json.obj(
"$geometry" -> Json.toJson(Json.obj(
"type" -> "Point",
"coordinates" -> Json.arr(lon, lat)
)),
"$maxDistance" -> Json.toJson(maxDistance),
"$minDistance" -> Json.toJson(minDistance)
))
))
)
).cursor[T](readPreference).collect[Seq](limit, Cursor.FailOnError((seq: Seq[T], err) => logger.error("Error finding locations.", err))))
totalCount.zip(searchResult).map {
case (total, entities) =>
Right(Page(entities, page, offset, total))
}.recover {
case e => Left(MongoExceptionBuilder.buildException(e))
}
}
}
示例5: AlgorithmParams
//设置package包名称以及导入依赖的类
package org.template.classification
import org.apache.predictionio.controller.P2LAlgorithm
import org.apache.predictionio.controller.Params
import org.apache.spark.mllib.classification.NaiveBayes
import org.apache.spark.mllib.classification.NaiveBayesModel
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.SparkContext
import grizzled.slf4j.Logger
case class AlgorithmParams(
lambda: Double
) extends Params
// extends P2LAlgorithm because the MLlib's NaiveBayesModel doesn't contain RDD.
class NaiveBayesAlgorithm(val ap: AlgorithmParams)
extends P2LAlgorithm[PreparedData, NaiveBayesModel, Query, PredictedResult] {
@transient lazy val logger = Logger[this.type]
def train(sc: SparkContext, data: PreparedData): NaiveBayesModel = {
// MLLib NaiveBayes cannot handle empty training data.
require(data.labeledPoints.take(1).nonEmpty,
s"RDD[labeledPoints] in PreparedData cannot be empty." +
" Please check if DataSource generates TrainingData" +
" and Preparator generates PreparedData correctly.")
NaiveBayes.train(data.labeledPoints, ap.lambda)
}
def predict(model: NaiveBayesModel, query: Query): PredictedResult = {
val features = SyntheticFeatures.transform(
Vectors.dense(
Array(query.voice_usage, query.data_usage, query.text_usage)
)
)
val label = model.predict(features)
new PredictedResult(label)
}
}
示例6: RandomForestAlgorithmParams
//设置package包名称以及导入依赖的类
package org.template.classification
import org.apache.predictionio.controller.P2LAlgorithm
import org.apache.predictionio.controller.Params
import org.apache.spark.mllib.tree.RandomForest
import org.apache.spark.mllib.tree.model.RandomForestModel
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.SparkContext
import grizzled.slf4j.Logger
case class RandomForestAlgorithmParams(
numClasses: Int,
numTrees: Int,
featureSubsetStrategy: String,
impurity: String,
maxDepth: Int,
maxBins: Int
) extends Params
// extends P2LAlgorithm because the MLlib's RandomForestAlgorithm doesn't contain RDD.
class RandomForestAlgorithm(val ap: RandomForestAlgorithmParams)
extends P2LAlgorithm[PreparedData, RandomForestModel, Query, PredictedResult] {
@transient lazy val logger = Logger[this.type]
def train(sc: SparkContext, data: PreparedData): RandomForestModel = {// Empty categoricalFeaturesInfo indicates all features are continuous.
val categoricalFeaturesInfo = Map[Int, Int]()
RandomForest.trainClassifier(
data.labeledPoints,
ap.numClasses,
categoricalFeaturesInfo,
ap.numTrees,
ap.featureSubsetStrategy,
ap.impurity,
ap.maxDepth,
ap.maxBins)
}
def predict(model: RandomForestModel, query: Query): PredictedResult = {
val features = Vectors.dense(
Array(query.voice_usage, query.data_usage, query.text_usage)
)
val label = model.predict(features)
new PredictedResult(label)
}
}
示例7: PredictedResult
//设置package包名称以及导入依赖的类
package org.template
import grizzled.slf4j.Logger
import org.apache.predictionio.controller.{ EmptyActualResult, EmptyEvaluationInfo, Engine, EngineFactory }
import org.template.conversions._
case class PredictedResult(
itemScores: Array[ItemScore])
extends Serializable
case class ItemScore(
item: ItemID, // item id
score: Double, // used to rank, original score returned from teh search engine
ranks: Option[Map[String, Double]] = None) extends Serializable
object RecommendationEngine extends EngineFactory {
@transient lazy implicit val logger: Logger = Logger[this.type]
drawActionML
def apply(): Engine[TrainingData, EmptyEvaluationInfo, PreparedData, Query, PredictedResult, EmptyActualResult] = {
new Engine(
classOf[DataSource],
classOf[Preparator],
Map("ur" -> classOf[URAlgorithm]), // IMPORTANT: "ur" must be the "name" of the parameter set in engine.json
classOf[Serving])
}
}
示例8: sendMail
//设置package包名称以及导入依赖的类
package wuxi99
import javax.mail.Message
import javax.mail.Session
import javax.mail.Transport
import javax.mail.internet.InternetAddress
import javax.mail.internet.MimeMessage
import java.util.Date
import java.util.Properties
import grizzled.slf4j.Logger
trait Email {
def sendMail(mailTitle:String,mailContent:String)
def sendMailFL(mailTitle:String,fileName:String,line:Int,AppCount:Int){
val mailContent = s"""<b>??:${fileName}</b><br>
<b>??:${line}</b><br>
<b>???:${AppCount}</b>"""
sendMail(mailTitle,mailContent)
}
def sendMailHtml(mailTitle:String,mailContent:String){
val mailContentHtml = s"<b>${mailContent}</b>"
sendMail(mailTitle,mailContentHtml)
}
}
object MailUtility extends Email {
private val smtpServer = "smtp.exmail.qq.com"
private val fromMail = "[email protected]"
private val toMail = "[email protected]"
private val user = fromMail
private val password = "ys123456"
@transient lazy val logger = Logger[this.type]
def sendMail(mailTitle:String,mailContent:String) {
try {
val props = new Properties()
props.put("mail.smtp.host",smtpServer )
props.put("mail.smtp.auth", "true")
val session = Session.getInstance(props)
val message = new MimeMessage(session)
message.setFrom(new InternetAddress(fromMail))
message.setRecipient(Message.RecipientType.TO, new InternetAddress(toMail))
message.setSubject(mailTitle)
message.setContent(mailContent, "text/html;charset=utf-8")
//message.setText(mailContent)
message.setSentDate(new Date())
message.saveChanges()
val transport = session.getTransport("smtp")
transport.connect(user, password)
transport.sendMessage(message, message.getAllRecipients())
transport.close()
} catch {
case _ : Throwable => logger.info("This Mail Didnot Send:[ " + mailTitle + " ] [ " + mailContent + "]" )
}
}
}