当前位置: 首页>>代码示例>>Scala>>正文


Scala DenseVector类代码示例

本文整理汇总了Scala中breeze.linalg.DenseVector的典型用法代码示例。如果您正苦于以下问题:Scala DenseVector类的具体用法?Scala DenseVector怎么用?Scala DenseVector使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了DenseVector类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Scala代码示例。

示例1: MllibLBFGS

//设置package包名称以及导入依赖的类
package optimizers

import breeze.linalg.{DenseVector, Vector}
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
import org.apache.spark.mllib.optimization.{L1Updater, SimpleUpdater, SquaredL2Updater, Updater}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import utils.Functions._


class MllibLBFGS(val data: RDD[LabeledPoint],
                 loss: LossFunction,
                 regularizer: Regularizer,
                 params: LBFGSParameters
                ) extends Optimizer(loss, regularizer) {

  val opt = new LogisticRegressionWithLBFGS

  val reg: Updater = (regularizer: Regularizer) match {
    case _: L1Regularizer => new L1Updater
    case _: L2Regularizer => new SquaredL2Updater
    case _: Unregularized => new SimpleUpdater
  }

  opt.optimizer.
    setNumIterations(params.iterations).
    setConvergenceTol(params.convergenceTol).
    setNumCorrections(params.numCorrections).
    setRegParam(regularizer.lambda).
    setUpdater(reg)

  override def optimize(): Vector[Double] = {
    val model = opt.run(data)
    val w = model.weights.toArray
    return DenseVector(w)
  }
} 
开发者ID:mlbench,项目名称:mlbench,代码行数:38,代码来源:MllibLBFGS.scala

示例2: rddvector

//设置package包名称以及导入依赖的类
package breeze

import breeze.linalg.{DenseMatrix, DenseVector}
import org.apache.spark.{SparkConf, SparkContext}
import org.slf4j.LoggerFactory
import spark.RecommendationExample.getClass

/**
  * Created by I311352 on 4/5/2017.
  */
object rddvector extends App {
  val LOG = LoggerFactory.getLogger(getClass)

  val conf = new SparkConf().setAppName("vector").setMaster("local[2]")
  val sc = new SparkContext(conf)
  val data = sc.textFile("data/testdata.txt")
  println(data.take(10).toList)

  val vectorRDD = data.map(value => {
    val columns = value.split(",").map(value => value.toDouble)
    new DenseVector(columns)
  })

  println(vectorRDD.take(100).toList)

  // multiply each row by a constant vector
  val constant = 5.0
  val broadcastConstant = sc.broadcast(constant)
  val scaledRDD = vectorRDD.map(row => {
    row :* broadcastConstant.value
  })

  println(scaledRDD.take(10).toList)

  val scaledRDDByPartition = vectorRDD.glom().map((value:Array[DenseVector[Double]]) => {
    val arrayValues = value.map(denseVector => denseVector.data).flatten
    val denseMatrix = new DenseMatrix[Double](value.length,value(0).length,arrayValues)
    denseMatrix :*= broadcastConstant.value
    denseMatrix.toDenseVector
  })

  println(scaledRDDByPartition.take(10).toList)
} 
开发者ID:compasses,项目名称:elastic-spark,代码行数:44,代码来源:rddvector.scala

示例3: ColorApp

//设置package包名称以及导入依赖的类
package com.esri

import java.awt.Color

import breeze.linalg.DenseVector


object ColorApp extends App {

  val rnd = new java.security.SecureRandom()
  val colorSeq = for (_ <- 0 until 200)
    yield {
      val r = rnd.nextInt(255)
      val g = rnd.nextInt(255)
      val b = rnd.nextInt(255)
      val hsb = Color.RGBtoHSB(r, g, b, null).map(_.toDouble)
      DenseVector[Double](hsb)
    }

  val colorLen = colorSeq.length
  val somSize = 8
  val nodes = for {
    q <- 0 until somSize
    r <- 0 until somSize
  } yield Node(q, r, colorSeq(rnd.nextInt(colorLen)))


  val epochMax = colorLen * 100
  implicit val pb = TerminalProgressBar(epochMax)
  val som = SOM(nodes)
  som.train(colorSeq, epochMax, somSize / 2, initialAlpha = 0.3)
  som.saveAsPNG("/tmp/som.png", 20)
} 
开发者ID:mraad,项目名称:spark-som-path,代码行数:34,代码来源:ColorApp.scala

示例4: SOMSpec

//设置package包名称以及导入依赖的类
package com.esri

import breeze.linalg.DenseVector
import org.scalatest.{FlatSpec, Matchers}

class SOMSpec extends FlatSpec with Matchers {
  it should "train the SOM" in {
    val nodes = for (q <- 0 until 10) yield {
      Node(q, 0, new DenseVector[Double](Array(q, 0.0)))
    }
    nodes.length shouldBe 10
    val som = SOM(nodes)
    som.train(new DenseVector[Double](Array(5.0, 0.0)), 1.0, 0.1)
  }
} 
开发者ID:mraad,项目名称:spark-som-path,代码行数:16,代码来源:SOMSpec.scala

示例5: MllibSGD

//设置package包名称以及导入依赖的类
package optimizers

import breeze.linalg.{DenseVector, Vector}
import org.apache.spark.mllib.classification.{LogisticRegressionWithSGD, SVMWithSGD}
import org.apache.spark.mllib.optimization.{L1Updater, SimpleUpdater, SquaredL2Updater, Updater}
import org.apache.spark.mllib.regression.{LabeledPoint, LinearRegressionWithSGD}
import org.apache.spark.rdd.RDD
import utils.Functions._

import scala.tools.cmd.gen.AnyVals.D




class MllibSGD(val data: RDD[LabeledPoint],
               loss: LossFunction,
               regularizer: Regularizer,
               params: SGDParameters,
               ctype: String
              ) extends Optimizer(loss, regularizer) {
  val opt = ctype match {
    case "SVM" => new SVMWithSGD()
    case "LR" => new LogisticRegressionWithSGD()
    case "Regression" => new LinearRegressionWithSGD()
  }

  val reg: Updater = (regularizer: Regularizer) match {
    case _: L1Regularizer => new L1Updater
    case _: L2Regularizer => new SquaredL2Updater
    case _: Unregularized => new SimpleUpdater
  }

  ctype match {
    case "SVM" => opt.asInstanceOf[SVMWithSGD].optimizer.
      setNumIterations(params.iterations).
      setMiniBatchFraction(params.miniBatchFraction).
      setStepSize(params.stepSize).
      setRegParam(regularizer.lambda).
      setUpdater(reg)
    case "LR" => opt.asInstanceOf[LogisticRegressionWithSGD].optimizer.
      setNumIterations(params.iterations).
      setMiniBatchFraction(params.miniBatchFraction).
      setStepSize(params.stepSize).
      setRegParam(regularizer.lambda).
      setUpdater(reg)
    case "Regression" => opt.asInstanceOf[LinearRegressionWithSGD].optimizer.
      setNumIterations(params.iterations).
      setMiniBatchFraction(params.miniBatchFraction).
      setStepSize(params.stepSize).
      setRegParam(regularizer.lambda).
      setUpdater(reg)
  }

  override def optimize(): Vector[Double] = {
    val model = opt.run(data)
    val w = model.weights.toArray
    DenseVector(w)
  }
} 
开发者ID:mlbench,项目名称:mlbench,代码行数:60,代码来源:MllibSGD.scala

示例6: CocoaParameters

//设置package包名称以及导入依赖的类
package optimizers

import java.io.Serializable

import breeze.linalg.DenseVector
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD


class CocoaParameters(var n: Int,
                      var numRounds: Int,
                      var localIterFrac: Double,
                      var lambda: Double,
                      var beta: Double,
                      var gamma: Double,
                      var numParts: Int,
                      var wInit: DenseVector[Double])  extends Serializable  {
  def this(train: RDD[LabeledPoint], test: RDD[LabeledPoint]) {
    this(train.count().toInt,
      200,
      1.0,
      0.01,
      1.0,
      1.0,
      train.partitions.size,
      DenseVector.zeros[Double](train.first().features.size))
  }
  def getLocalIters() = (localIterFrac * n / numParts).toInt

  def getDistOptPar(): distopt.utils.Params ={
    val loss = distopt.utils.OptUtils.hingeLoss _
    return distopt.utils.Params(loss, n, wInit, numRounds, getLocalIters, lambda, beta, gamma)
  }

  override def toString = s"CocoaParameters(n: $n, numRounds: $numRounds, localIters: $getLocalIters, " +
    s"lambda: $lambda, beta: $beta, gamma: $gamma, wInit: $wInit)"
} 
开发者ID:mlbench,项目名称:mlbench,代码行数:38,代码来源:CocoaParameters.scala

示例7: weights

//设置package包名称以及导入依赖的类
package regression

import breeze.linalg.DenseVector
import breeze.numerics.{log, sigmoid}


trait Regressor {
  private lazy val weightsWithIterations = learn

  def weights: DenseVector[Double] = weightsWithIterations._1

  def iterations: Seq[Double] = weightsWithIterations._2

  protected def predict(x: DenseVector[Double], weights: DenseVector[Double]): Double

  protected def costOfPrediction(h: Double, y: Double): Double

  protected def learn: (DenseVector[Double], Seq[Double])

  def predict(x: DenseVector[Double]): Double = {
    predict(x, weights)
  }

  def cost(x: DenseVector[Double], y: Double): Double = {
    costOfPrediction(predict(x), y)
  }

  def meanCost(data: Iterable[(DenseVector[Double], Double)]): Double = {
    var cost = 0.0d
    var total = 0L
    data.foreach { case (x, y) =>
      total += 1
      cost += costOfPrediction(predict(x), y)
    }
    cost / total
  }
}

trait LinearLike {
  protected def predict(x: DenseVector[Double], weights: DenseVector[Double]): Double = {
    x dot weights
  }

  protected def costOfPrediction(h: Double, y: Double): Double = {
    val error = h - y
    error * error / 2
  }
}

trait LogisticLike {
  protected def predict(x: DenseVector[Double], weights: DenseVector[Double]): Double = {
    sigmoid(x dot weights)
  }

  protected def costOfPrediction(h: Double, y: Double): Double = {
    -y * log(h) - (1.0 - y) * log(1.0 - h)
  }
} 
开发者ID:agolovenko,项目名称:ml-tools,代码行数:59,代码来源:Regressor.scala

示例8: Evaluation

//设置package包名称以及导入依赖的类
package util

import breeze.linalg.{DenseMatrix, DenseVector, sum}
import regression.Regressor


object Evaluation {
  def confusion(lr: Regressor, data: Iterable[(DenseVector[Double], Double)]): DenseMatrix[Double] = {
    val confusion = DenseMatrix.zeros[Double](2, 2)

    data.map { case (x, y) =>
      (y.toInt, if (lr.predict(x) > 0.5) 1 else 0)
    } foreach { case (truth, predicted) =>
      confusion(truth, predicted) += 1.0
    }

    confusion
  }

  def printConfusionMtx(confusion: DenseMatrix[Double]): Unit = {
    val negatives = confusion(0, 0) + confusion(0, 1)
    val positives = confusion(1, 0) + confusion(1, 1)
    val total = sum(confusion)

    val falseNegatives = confusion(1, 0)
    val falsePositives = confusion(0, 1)
    val accuracy = (confusion(0, 0) + confusion(1, 1)) / total

    println("============= Stats =============\n")

    println(f"Positive examples: $positives%1.0f")
    println(f"Negative examples: $negatives%1.0f")
    println(f"Total: $total%1.0f")
    println(f"Pos/Neg ratio: ${positives/negatives}%1.2f")

    println("\n============= Results =============\n")

    println("Confusion Matrix:")
    println(confusion)
    println(f"Accuracy: ${accuracy * 100}%2.2f%%")
    println(f"False positives: ${falsePositives * 100 / negatives}%2.2f%%")
    println(f"False negatives: ${falseNegatives * 100 / positives}%2.2f%%")
  }
} 
开发者ID:agolovenko,项目名称:ml-tools,代码行数:45,代码来源:Evaluation.scala

示例9: Transformations

//设置package包名称以及导入依赖的类
package util

import breeze.linalg.DenseVector


object Transformations {
  def minMax(med: DenseVector[Double], halfRange: DenseVector[Double])(features: DenseVector[Double]): DenseVector[Double] = {
    (features :- med) / halfRange
  }

  def zScore(means: DenseVector[Double], stddevs: DenseVector[Double])(features: DenseVector[Double]): DenseVector[Double] = {
    (features :- means) :/ stddevs
  }

  def filter(indices: Set[Int])(features: DenseVector[Double]): DenseVector[Double] = {
    val result = features.keysIterator.collect {
      case i if indices.contains(i) => features(i)
    }.toArray

    DenseVector(result)
  }

  def addPolynomialFeatures(mask: DenseVector[Boolean], maxPower: Int)(features: DenseVector[Double]): DenseVector[Double] = {
    val f = features(mask).toArray
    val len = (maxPower - 1) * f.length

    val polyFeatures = new Array[Double](len)

    var j = 0
    for (p <- 2 to maxPower) {
      f.indices.foreach { i =>
        polyFeatures(j) = Math.pow(f(i), p)
        j += 1
      }
    }

    DenseVector.vertcat(features, DenseVector(polyFeatures))
  }

} 
开发者ID:agolovenko,项目名称:ml-tools,代码行数:41,代码来源:Transformations.scala

示例10: TabularSpec

//设置package包名称以及导入依赖的类
import org.scalatest._

import breeze.linalg.{DenseVector, argmax}

import scarla.domain.{Fixtures => F, State}
import scarla.mapping.Tabular

class TabularSpec extends FlatSpec with Matchers {

  "A tabular mapping" should "have the correct dimensionality" in {
    val m = new Tabular(F.spec(nd=3), 20)

    m.dimensionality should be (scala.math.pow(20, 3))
  }

  it should "have no collisions in 1d" in {
    val m = new Tabular(F.spec(nd=1), 10)

    for (i <- 0 until 10) {
      val p = DenseVector.zeros[Double](10)
      p(i) = 1.0

      m._phi(Vector(i)) should be (p)
    }
  }

  it should "have no collisions in 2d" in {
    val m = new Tabular(F.spec(nd=2), 10)

    val ps = DenseVector.zeros[Double](100)
    for (i <- 0 until 10; j <- 0 until 10) {
      val l = argmax(m._phi(Vector(i, j)))

      ps(l) should be (0.0)
      ps(l) = 1.0
    }
  }

  it should "have no collisions in 3d" in {
    val m = new Tabular(F.spec(nd=3), 10)

    val ps = DenseVector.zeros[Double](10000)
    for (i <- 0 until 10; j <- 0 until 10; k <- 0 until 10) {
      val l = argmax(m._phi(Vector(i, j, k)))

      ps(l) should be (0.0)
      ps(l) = 1.0
    }
  }
} 
开发者ID:tspooner,项目名称:scaRLa,代码行数:51,代码来源:TabularSpec.scala

示例11: sampleFeature

//设置package包名称以及导入依赖的类
package glintlda.naive

import breeze.linalg.{DenseVector, Vector}
import breeze.stats.distributions.Multinomial
import glintlda.LDAConfig
import glintlda.util.FastRNG


  def sampleFeature(feature: Int, oldTopic: Int): Int = {
    var i = 0
    val p = DenseVector.zeros[Double](config.topics)
    var sum = 0.0
    while (i < config.topics) {
      p(i) = (documentCounts(i) + ?) * ((wordCounts(i) + ?) / (globalCounts(i) + ?Sum))
      sum += p(i)
      i += 1
    }
    p /= sum
    Multinomial(p).draw()
  }

} 
开发者ID:rjagerman,项目名称:glintlda,代码行数:23,代码来源:Sampler.scala

示例12: StreamingSimpleModel

//设置package包名称以及导入依赖的类
package com.bigchange.streaming

import breeze.linalg.DenseVector
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.{LabeledPoint, StreamingLinearRegressionWithSGD}
import org.apache.spark.streaming.{Seconds, StreamingContext}


object StreamingSimpleModel {

  def main(args: Array[String]) {

    val ssc = new StreamingContext("local","test",Seconds(10))
    val stream = ssc.socketTextStream("localhost",9999)
    val numberFeatures = 100
    val zeroVector = DenseVector.zeros[Double](numberFeatures)
    val model = new StreamingLinearRegressionWithSGD()
      .setInitialWeights(Vectors.dense(zeroVector.data))
      .setNumIterations(1)
      .setStepSize(0.01)


    val labeledStream = stream.map { event =>
      val split = event.split("\t")
      val y = split(0).toDouble
      val features = split(1).split(",").map(_.toDouble)
      LabeledPoint(label = y, features = Vectors.dense(features))
    }

    model.trainOn(labeledStream)
    // ??DStream?????
    val predictAndTrue = labeledStream.transform { rdd =>
     val latestModel = model.latestModel()
      rdd.map { point =>
        val predict = latestModel.predict(point.features)
        predict - point.label
      }
    }
    // ??MSE
    predictAndTrue.foreachRDD { rdd =>
      val  mse = rdd.map(x => x * x).mean()
      val rmse = math.sqrt(mse)
      println(s"current batch, MSE: $mse, RMSE:$rmse")

    }
    ssc.start()
    ssc.awaitTermination()

  }
} 
开发者ID:bigchange,项目名称:AI,代码行数:51,代码来源:StreamingSimpleModel.scala

示例13: LazyWindower

//设置package包名称以及导入依赖的类
package nodes

import breeze.linalg.DenseVector
import org.apache.spark.rdd.RDD
import pipelines.FunctionNode
import utils.{ImageMetadata, ChannelMajorArrayVectorizedImage, Image}


class LazyWindower(
    stride: Int,
    windowSize: Int) extends FunctionNode[RDD[Image], RDD[Image]] {

  def apply(in: RDD[Image]) = {
    in.flatMap(getImageWindow)
  }

  def getImageWindow(image: Image) = {
    val xDim = image.metadata.xDim
    val yDim = image.metadata.yDim
    val numChannels = image.metadata.numChannels

    // Start at (0,0) in (x, y) and
    (0 until xDim - windowSize + 1 by stride).toIterator.flatMap { x =>
      (0 until yDim - windowSize + 1 by stride).toIterator.map { y =>
        // Extract the window.
        val pool = new DenseVector[Double](windowSize * windowSize * numChannels)
        val startX = x
        val endX = x + windowSize
        val startY = y
        val endY = y + windowSize

        var c = 0
        while (c < numChannels) {
          var s = startX
          while (s < endX) {
            var b = startY
            while (b < endY) {
              pool(c + (s-startX)*numChannels +
                (b-startY)*(endX-startX)*numChannels) = image.get(s, b, c)
              b = b + 1
            }
            s = s + 1
          }
          c = c + 1
        }
        ChannelMajorArrayVectorizedImage(pool.toArray,
          ImageMetadata(windowSize, windowSize, numChannels))
      }
    }
  }

} 
开发者ID:Vaishaal,项目名称:ckm,代码行数:53,代码来源:LazyWindower.scala

示例14: PassiveAggressiveBinaryModelEvaluation

//设置package包名称以及导入依赖的类
package hu.sztaki.ilab.ps.test.utils

import breeze.linalg.{DenseVector, SparseVector}
import hu.sztaki.ilab.ps.passive.aggressive.algorithm.PassiveAggressiveBinaryAlgorithm
import org.slf4j.LoggerFactory

class PassiveAggressiveBinaryModelEvaluation

object PassiveAggressiveBinaryModelEvaluation {

  private val log = LoggerFactory.getLogger(classOf[PassiveAggressiveBinaryModelEvaluation])


  def accuracy(model: DenseVector[Double],
               testLines: Traversable[(SparseVector[Double], Option[Boolean])],
               featureCount: Int,
               pac: PassiveAggressiveBinaryAlgorithm): Double = {

    var tt = 0
    var ff = 0
    var tf = 0
    var ft = 0
    var cnt = 0
    testLines.foreach { case (vector, label) => label match {
      case Some(lab) =>
        val real = lab
        val predicted = pac.predict(vector, model)
        (real, predicted) match {
          case (true, true) => tt +=1
          case (false, false) => ff +=1
          case (true, false) => tf +=1
          case (false, true) => ft +=1
        }
        cnt += 1
      case _ => throw new IllegalStateException("Labels shold not be missing.")
    }
    }
    val percent = ((tt + ff).toDouble / cnt) * 100

    percent
  }


} 
开发者ID:gaborhermann,项目名称:flink-parameter-server,代码行数:45,代码来源:PassiveAggressiveBinaryModelEvaluation.scala

示例15: QuadraticObjectiveFunction

//设置package包名称以及导入依赖的类
package cvx

import breeze.linalg.{DenseMatrix, DenseVector}
import MatrixUtils._


class QuadraticObjectiveFunction(

        override val dim:Int,
        val r:Double,
        val a:DenseVector[Double],
        val P:DenseMatrix[Double]
)
extends ObjectiveFunction(dim) {

    if(a.length!=dim){
        val msg = "Vector a must be of dimension "+dim+" but length(a) "+a.length
        throw new IllegalArgumentException(msg)
    }
    if(!(P.rows==dim & P.cols==dim)) {

        val msg = "Matrix P must be square of dimension "+dim+" but is "+P.rows+"x"+P.cols
        throw new IllegalArgumentException(msg)
    }
    checkSymmetric(P,1e-13)

    def valueAt(x:DenseVector[Double]) = { checkDim(x); r + (a dot x) + (x dot (P*x))/2 }
    def gradientAt(x:DenseVector[Double]) = { checkDim(x); a+P*x }
    def hessianAt(x:DenseVector[Double]) = { checkDim(x); P }

} 
开发者ID:spyqqqdia,项目名称:cvx,代码行数:32,代码来源:QuadraticObjectiveFunction.scala


注:本文中的breeze.linalg.DenseVector类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。