本文整理汇总了Python中yaml.UnsafeLoader方法的典型用法代码示例。如果您正苦于以下问题:Python yaml.UnsafeLoader方法的具体用法?Python yaml.UnsafeLoader怎么用?Python yaml.UnsafeLoader使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类yaml
的用法示例。
在下文中一共展示了yaml.UnsafeLoader方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testOpenNMTTokenizerAssets
# 需要导入模块: import yaml [as 别名]
# 或者: from yaml import UnsafeLoader [as 别名]
def testOpenNMTTokenizerAssets(self):
asset_dir = self.get_temp_dir()
# Write a dummy BPE model.
bpe_model_path = os.path.join(asset_dir, "model.bpe")
with open(bpe_model_path, "w") as bpe_model_file:
bpe_model_file.write("#version: 0.2\ne s</w>\n")
tokenizer = tokenizers.OpenNMTTokenizer(mode="conservative", bpe_model_path=bpe_model_path)
# Generated assets are prefixed but not existing resources.
assets = tokenizer.export_assets(asset_dir, asset_prefix="source_")
self.assertIn("source_tokenizer_config.yml", assets)
self.assertTrue(os.path.exists(assets["source_tokenizer_config.yml"]))
self.assertIn("model.bpe", assets)
self.assertTrue(os.path.exists(assets["model.bpe"]))
# The tokenization configuration should not contain absolute paths to resources.
with open(assets["source_tokenizer_config.yml"], "rb") as config_file:
asset_config = yaml.load(config_file.read(), Loader=yaml.UnsafeLoader)
self.assertDictEqual(asset_config, {"mode": "conservative", "bpe_model_path": "model.bpe"})
示例2: load_config
# 需要导入模块: import yaml [as 别名]
# 或者: from yaml import UnsafeLoader [as 别名]
def load_config(config_paths, config=None):
"""Loads YAML configuration files.
Args:
config_paths: A list of configuration files that will be merged to a single
configuration. The rightmost configuration takes priority.
config: A (possibly non empty) config dictionary to fill.
Returns:
The configuration as Python dictionary.
"""
if config is None:
config = {}
for config_path in config_paths:
with tf.io.gfile.GFile(config_path, mode="rb") as config_file:
subconfig = yaml.load(config_file.read(), Loader=yaml.UnsafeLoader)
# Add or update section in main configuration.
merge_dict(config, subconfig)
return config
示例3: read_reader_config
# 需要导入模块: import yaml [as 别名]
# 或者: from yaml import UnsafeLoader [as 别名]
def read_reader_config(config_files, loader=UnsafeLoader):
"""Read the reader `config_files` and return the info extracted."""
conf = {}
LOG.debug('Reading %s', str(config_files))
for config_file in config_files:
with open(config_file) as fd:
conf.update(yaml.load(fd.read(), Loader=loader))
try:
reader_info = conf['reader']
except KeyError:
raise KeyError(
"Malformed config file {}: missing reader 'reader'".format(
config_files))
reader_info['config_files'] = config_files
return reader_info
示例4: __init__
# 需要导入模块: import yaml [as 别名]
# 或者: from yaml import UnsafeLoader [as 别名]
def __init__(self, config_files):
"""Load information from YAML configuration file about how to read data files."""
self.config = {}
self.config_files = config_files
for config_file in config_files:
with open(config_file) as fd:
self.config = recursive_dict_update(self.config, yaml.load(fd, Loader=UnsafeLoader))
self.info = self.config['reader']
self.name = self.info['name']
self.file_patterns = []
for file_type, filetype_info in self.config['file_types'].items():
filetype_info.setdefault('file_type', file_type)
# correct separator if needed
file_patterns = [os.path.join(*pattern.split('/'))
for pattern in filetype_info['file_patterns']]
filetype_info['file_patterns'] = file_patterns
self.file_patterns.extend(file_patterns)
if 'sensors' in self.info and not isinstance(self.info['sensors'], (list, tuple)):
self.info['sensors'] = [self.info['sensors']]
self.datasets = self.config.get('datasets', {})
self.info['filenames'] = []
self.all_ids = {}
self.load_ds_ids_from_config()
示例5: read_writer_config
# 需要导入模块: import yaml [as 别名]
# 或者: from yaml import UnsafeLoader [as 别名]
def read_writer_config(config_files, loader=UnsafeLoader):
"""Read the writer `config_files` and return the info extracted."""
conf = {}
LOG.debug('Reading %s', str(config_files))
for config_file in config_files:
with open(config_file) as fd:
conf.update(yaml.load(fd.read(), Loader=loader))
try:
writer_info = conf['writer']
except KeyError:
raise KeyError(
"Malformed config file {}: missing writer 'writer'".format(
config_files))
writer_info['config_files'] = config_files
return writer_info
示例6: get_saved_hyperparams
# 需要导入模块: import yaml [as 别名]
# 或者: from yaml import UnsafeLoader [as 别名]
def get_saved_hyperparams(stats_path, norm_reward=False, test_mode=False):
"""
:param stats_path: (str)
:param norm_reward: (bool)
:param test_mode: (bool)
:return: (dict, str)
"""
hyperparams = {}
if not os.path.isdir(stats_path):
stats_path = None
else:
config_file = os.path.join(stats_path, 'config.yml')
if os.path.isfile(config_file):
# Load saved hyperparameters
with open(os.path.join(stats_path, 'config.yml'), 'r') as f:
hyperparams = yaml.load(f, Loader=yaml.UnsafeLoader) # pytype: disable=module-attr
hyperparams['normalize'] = hyperparams.get('normalize', False)
else:
obs_rms_path = os.path.join(stats_path, 'obs_rms.pkl')
hyperparams['normalize'] = os.path.isfile(obs_rms_path)
# Load normalization params
if hyperparams['normalize']:
if isinstance(hyperparams['normalize'], str):
normalize_kwargs = eval(hyperparams['normalize'])
if test_mode:
normalize_kwargs['norm_reward'] = norm_reward
else:
normalize_kwargs = {'norm_obs': hyperparams['normalize'], 'norm_reward': norm_reward}
hyperparams['normalize_kwargs'] = normalize_kwargs
return hyperparams, stats_path
示例7: make_tokenizer
# 需要导入模块: import yaml [as 别名]
# 或者: from yaml import UnsafeLoader [as 别名]
def make_tokenizer(config=None):
"""Creates a tokenizer instance from the configuration.
Args:
config: Path to a configuration file or the configuration dictionary.
Returns:
A :class:`opennmt.tokenizers.Tokenizer` instance.
Raises:
ValueError: if :obj:`config` is invalid.
"""
if config:
if isinstance(config, str) and tf.io.gfile.exists(config):
with tf.io.gfile.GFile(config, mode="rb") as config_file:
config = yaml.load(config_file, Loader=yaml.UnsafeLoader)
if isinstance(config, dict):
tokenizer_type = config.get("type")
if tokenizer_type is None:
tokenizer_type = "OpenNMTTokenizer"
tokenizer_params = config
else:
tokenizer_params = config.get("params", {})
tokenizer_class = _TOKENIZERS_REGISTRY.get(tokenizer_type)
if tokenizer_class is None:
raise ValueError("%s is not in list of accepted tokenizers: %s" % (
tokenizer_type, ", ".join(sorted(_TOKENIZERS_REGISTRY.class_names))))
tokenizer = tokenizer_class(**tokenizer_params)
else:
raise ValueError("Invalid tokenization configuration: %s" % str(config))
else:
# If the tokenization was not configured, we assume that an external tokenization
# was used and we don't include the tokenizer in the exported graph.
tokenizer = SpaceTokenizer(in_graph=False)
return tokenizer
示例8: load_yaml
# 需要导入模块: import yaml [as 别名]
# 或者: from yaml import UnsafeLoader [as 别名]
def load_yaml(self):
"""Load cache from YAML file."""
with open(self.filename, "r") as stream:
try:
# FIXME: workaround using UnsafeLoader because https://github.com/yaml/pyyaml/issues/380
data = yaml.load(stream, Loader=yaml.UnsafeLoader)
except yaml.YAMLError as err:
print(err)
for key, val in data.items():
setattr(self, key, val)
return self
示例9: load
# 需要导入模块: import yaml [as 别名]
# 或者: from yaml import UnsafeLoader [as 别名]
def load(fname: str) -> 'Config':
"""
Returns a Config object loaded from a file.
:param fname: Name of file to load the Config from.
:return: Configuration.
"""
with open(fname) as inp:
obj = yaml.load(inp, Loader=yaml.UnsafeLoader) # type: ignore
return obj
示例10: _load_config
# 需要导入模块: import yaml [as 别名]
# 或者: from yaml import UnsafeLoader [as 别名]
def _load_config(self, composite_configs, **kwargs):
if not isinstance(composite_configs, (list, tuple)):
composite_configs = [composite_configs]
conf = {}
for composite_config in composite_configs:
with open(composite_config) as conf_file:
conf = recursive_dict_update(conf, yaml.load(conf_file, Loader=UnsafeLoader))
try:
sensor_name = conf['sensor_name']
except KeyError:
LOG.debug('No "sensor_name" tag found in %s, skipping.',
composite_config)
return
sensor_id = sensor_name.split('/')[-1]
sensor_deps = sensor_name.split('/')[:-1]
compositors = self.compositors.setdefault(sensor_id, DatasetDict())
modifiers = self.modifiers.setdefault(sensor_id, {})
for sensor_dep in reversed(sensor_deps):
if sensor_dep not in self.compositors or sensor_dep not in self.modifiers:
self.load_sensor_composites(sensor_dep)
if sensor_deps:
compositors.update(self.compositors[sensor_deps[-1]])
modifiers.update(self.modifiers[sensor_deps[-1]])
for composite_type in ['modifiers', 'composites']:
if composite_type not in conf:
continue
for composite_name in conf[composite_type]:
self._process_composite_config(composite_name, conf,
composite_type, sensor_id, composite_config, **kwargs)
示例11: add_config_to_tree
# 需要导入模块: import yaml [as 别名]
# 或者: from yaml import UnsafeLoader [as 别名]
def add_config_to_tree(self, *decision_dict):
"""Add configuration to tree."""
conf = {}
for config_file in decision_dict:
if os.path.isfile(config_file):
with open(config_file) as fd:
enhancement_config = yaml.load(fd, Loader=UnsafeLoader)
if enhancement_config is None:
# empty file
continue
enhancement_section = enhancement_config.get(
self.prefix, {})
if not enhancement_section:
LOG.debug("Config '{}' has no '{}' section or it is empty".format(config_file, self.prefix))
continue
conf = recursive_dict_update(conf, enhancement_section)
elif isinstance(config_file, dict):
conf = recursive_dict_update(conf, config_file)
else:
LOG.debug("Loading enhancement config string")
d = yaml.load(config_file, Loader=UnsafeLoader)
if not isinstance(d, dict):
raise ValueError(
"YAML file doesn't exist or string is not YAML dict: {}".format(config_file))
conf = recursive_dict_update(conf, d)
self._build_tree(conf)
示例12: check_yaml_configs
# 需要导入模块: import yaml [as 别名]
# 或者: from yaml import UnsafeLoader [as 别名]
def check_yaml_configs(configs, key):
"""Get a diagnostic for the yaml *configs*.
*key* is the section to look for to get a name for the config at hand.
"""
diagnostic = {}
for i in configs:
for fname in i:
with open(fname) as stream:
try:
res = yaml.load(stream, Loader=UnsafeLoader)
msg = 'ok'
except yaml.YAMLError as err:
stream.seek(0)
res = yaml.load(stream, Loader=BaseLoader)
if err.context == 'while constructing a Python object':
msg = err.problem
else:
msg = 'error'
finally:
try:
diagnostic[res[key]['name']] = msg
except (KeyError, TypeError):
# this object doesn't have a 'name'
pass
return diagnostic