本文整理汇总了Python中xgboost.__version__方法的典型用法代码示例。如果您正苦于以下问题:Python xgboost.__version__方法的具体用法?Python xgboost.__version__怎么用?Python xgboost.__version__使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类xgboost
的用法示例。
在下文中一共展示了xgboost.__version__方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: xgboost_installed
# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import __version__ [as 别名]
def xgboost_installed():
"""
Checks that *xgboost* is available.
"""
try:
import xgboost # noqa F401
except ImportError:
return False
from xgboost.core import _LIB
try:
_LIB.XGBoosterDumpModelEx
except AttributeError:
# The version is not recent enough even though it is version 0.6.
# You need to install xgboost from github and not from pypi.
return False
from xgboost import __version__
vers = LooseVersion(__version__)
allowed = LooseVersion('0.7')
if vers < allowed:
warnings.warn('The converter works for xgboost >= 0.7. Earlier versions might not.')
return True
示例2: create_model_wrapper
# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import __version__ [as 别名]
def create_model_wrapper(params, featurizer, ds_client=None):
"""Factory function for creating Model objects of the correct subclass for params.model_type.
Args:
params (Namespace) : Parameters passed to the model pipeline
featurizer (Featurization): Object managing the featurization of compounds
ds_client (DatastoreClient): Interface to the file datastore
Returns:
model (pipeline.Model): Wrapper for DeepChem, sklearn or other model.
Raises:
ValueError: Only params.model_type = 'NN', 'RF' or 'xgboost' is supported.
"""
if params.model_type == 'NN':
return DCNNModelWrapper(params, featurizer, ds_client)
elif params.model_type == 'RF':
return DCRFModelWrapper(params, featurizer, ds_client)
elif params.model_type == 'xgboost':
if not xgboost_supported:
raise Exception("Unable to import xgboost. \
xgboost package needs to be installed to use xgboost model. \
Installatin: \
from pip: pip3 install xgboost.\
livermore compute (lc): /usr/mic/bio/anaconda3/bin/pip install xgboost --user \
twintron-blue (TTB): /opt/conda/bin/pip install xgboost --user/ \ "
)
elif float(xgb.__version__) < 0.9:
raise Exception(f"xgboost required to be >= 0.9 for GPU support. \
current version = {float(xgb.__version__)} \
installatin: \
from pip: pip3 install --upgrade xgboost \
livermore compute (lc): /usr/mic/bio/anaconda3/bin/pip install --upgrade xgboost --user \
twintron-blue (TTB): /opt/conda/bin/pip install --upgrade xgboost --user/ "
)
else:
return DCxgboostModelWrapper(params, featurizer, ds_client)
else:
raise ValueError("Unknown model_type %s" % params.model_type)
# ****************************************************************************************
示例3: __init__
# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import __version__ [as 别名]
def __init__(self, params):
super(XgbAlgorithm, self).__init__(params)
self.library_version = xgb.__version__
self.explain_level = params.get("explain_level", 0)
self.boosting_rounds = additional.get("max_rounds", 10000)
self.max_iters = 1
self.early_stopping_rounds = additional.get("early_stopping_rounds", 50)
self.learner_params = {
"tree_method": "hist",
"booster": "gbtree",
"objective": self.params.get("objective"),
"eval_metric": self.params.get("eval_metric"),
"eta": self.params.get("eta", 0.01),
"max_depth": self.params.get("max_depth", 1),
"min_child_weight": self.params.get("min_child_weight", 1),
"subsample": self.params.get("subsample", 0.8),
"colsample_bytree": self.params.get("colsample_bytree", 0.8),
"silent": self.params.get("silent", 1),
"seed": self.params.get("seed", 1),
}
# check https://github.com/dmlc/xgboost/issues/5637
if self.learner_params["seed"] > 2147483647:
self.learner_params["seed"] = self.learner_params["seed"] % 2147483647
if "num_class" in self.params: # multiclass classification
self.learner_params["num_class"] = self.params.get("num_class")
self.best_ntree_limit = 0
logger.debug("XgbLearner __init__")
示例4: get_default_conda_env
# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import __version__ [as 别名]
def get_default_conda_env():
"""
:return: The default Conda environment for MLflow Models produced by calls to
:func:`save_model()` and :func:`log_model()`.
"""
import xgboost as xgb
return _mlflow_conda_env(
additional_conda_deps=None,
# XGBoost is not yet available via the default conda channels, so we install it via pip
additional_pip_deps=[
"xgboost=={}".format(xgb.__version__),
],
additional_conda_channels=None)