当前位置: 首页>>代码示例>>Python>>正文


Python xgboost.XGBRegressor方法代码示例

本文整理汇总了Python中xgboost.XGBRegressor方法的典型用法代码示例。如果您正苦于以下问题:Python xgboost.XGBRegressor方法的具体用法?Python xgboost.XGBRegressor怎么用?Python xgboost.XGBRegressor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在xgboost的用法示例。


在下文中一共展示了xgboost.XGBRegressor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Train

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def Train(data, modelcount, censhu, yanzhgdata):
    model = xgb.XGBRegressor(max_depth=censhu, learning_rate=0.1, n_estimators=modelcount, silent=True, objective='reg:gamma')

    model.fit(data[:, :-1], data[:, -1])
    # 给出训练数据的预测值
    train_out = model.predict(data[:, :-1])
    # 计算MSE
    train_mse = mse(data[:, -1], train_out)

    # 给出验证数据的预测值
    add_yan = model.predict(yanzhgdata[:, :-1])
    # 计算MSE
    add_mse = mse(yanzhgdata[:, -1], add_yan)
    print(train_mse, add_mse)
    return train_mse, add_mse

# 最终确定组合的函数 
开发者ID:Anfany,项目名称:Machine-Learning-for-Beginner-by-Python3,代码行数:19,代码来源:XGBoost_Regression_pm25.py

示例2: test_xgb_regressor

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def test_xgb_regressor(self):
        # Train model
        training_data = datasets.make_regression(n_features=5)
        regressor = XGBRegressor()
        regressor.fit(training_data[0], training_data[1])

        # Get some test results
        test_data = [[0.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]]
        test_results = regressor.predict(np.asarray(test_data))

        # Serialise the models to Elasticsearch
        feature_names = ["f0", "f1", "f2", "f3", "f4"]
        model_id = "test_xgb_regressor"

        es_model = ImportedMLModel(
            ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=True
        )

        es_results = es_model.predict(test_data)

        np.testing.assert_almost_equal(test_results, es_results, decimal=2)

        # Clean up
        es_model.delete_model() 
开发者ID:elastic,项目名称:eland,代码行数:26,代码来源:test_imported_ml_model_pytest.py

示例3: _dispatch_gbdt_class

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def _dispatch_gbdt_class(algorithm_type: str, type_of_target: str):
    is_regression = type_of_target == 'continuous'

    if algorithm_type == 'lgbm':
        requires_lightgbm()
        from lightgbm import LGBMClassifier, LGBMRegressor
        return LGBMRegressor if is_regression else LGBMClassifier
    elif algorithm_type == 'cat':
        requires_catboost()
        from catboost import CatBoostClassifier, CatBoostRegressor
        return CatBoostRegressor if is_regression else CatBoostClassifier
    else:
        requires_xgboost()
        assert algorithm_type == 'xgb'
        from xgboost import XGBClassifier, XGBRegressor
        return XGBRegressor if is_regression else XGBClassifier 
开发者ID:nyanp,项目名称:nyaggle,代码行数:18,代码来源:run.py

示例4: _train_convert_evaluate_assert

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def _train_convert_evaluate_assert(self, bt_params={}, allowed_error={}, **params):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        # Train a model
        xgb_model = xgboost.XGBRegressor(**params)
        xgb_model.fit(self.X, self.target)

        # Convert the model (feature_names can't be given because of XGboost)
        spec = xgb_converter.convert(
            xgb_model, self.feature_names, self.output_name, force_32bit_float=False
        )

        if _is_macos() and _macos_version() >= (10, 13):
            # Get predictions
            df = pd.DataFrame(self.X, columns=self.feature_names)
            df["prediction"] = xgb_model.predict(self.X)

            # Evaluate it
            metrics = evaluate_regressor(spec, df, target="target", verbose=False)
            self._check_metrics(metrics, bt_params, allowed_error) 
开发者ID:apple,项目名称:coremltools,代码行数:23,代码来源:test_boosted_trees_regression_numeric.py

示例5: opt_pro

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def opt_pro(optimization_protocol):
    opt = optimization_protocol(iterations=3, random_state=32, n_initial_points=1)
    opt.forge_experiment(
        model_initializer=XGBRegressor,
        model_init_params=dict(
            max_depth=Integer(2, 10),
            n_estimators=Integer(50, 300),
            learning_rate=Real(0.1, 0.9),
            subsample=0.5,
            booster=Categorical(["gbtree", "gblinear"]),
        ),
        model_extra_params=dict(fit=dict(eval_metric=Categorical(["rmse", "mae"]))),
        feature_engineer=FeatureEngineer([Categorical([nothing_transform], optional=True)]),
    )
    opt.go()
    return opt


##################################################
# Feature Engineering Steps
################################################## 
开发者ID:HunterMcGushion,项目名称:hyperparameter_hunter,代码行数:23,代码来源:test_saved_engineer_step.py

示例6: test_optional_step_matching

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def test_optional_step_matching(env_boston, feature_engineer):
    """Tests that a Space containing `optional` `Categorical` Feature Engineering steps matches with
    the expected saved Experiments. This regression test is focused on issues that arise when
    `EngineerStep`s other than the last one in the `FeatureEngineer` are `optional`. The simplified
    version of this test below, :func:`test_limited_optional_step_matching`, demonstrates that
    result matching works properly when only the final `EngineerStep` is `optional`"""
    opt_0 = DummyOptPro(iterations=20, random_state=32)
    opt_0.forge_experiment(XGBRegressor, feature_engineer=feature_engineer)
    opt_0.go()

    opt_1 = ExtraTreesOptPro(iterations=20, random_state=32)
    opt_1.forge_experiment(XGBRegressor, feature_engineer=feature_engineer)
    opt_1.get_ready()

    # Assert `opt_1` matched with all Experiments executed by `opt_0`
    assert len(opt_1.similar_experiments) == opt_0.successful_iterations 
开发者ID:HunterMcGushion,项目名称:hyperparameter_hunter,代码行数:18,代码来源:test_saved_engineer_step.py

示例7: test_optional_step_matching_by_exp

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def test_optional_step_matching_by_exp(env_boston, es_0, es_1, es_2):
    """Test that the result of an Experiment is correctly matched by an OptPro with all-`optional`
    `EngineerStep` dimensions"""
    feature_engineer = [_ for _ in [es_0, es_1, es_2] if _ is not None]
    exp_0 = CVExperiment(XGBRegressor, feature_engineer=feature_engineer)

    opt_0 = ExtraTreesOptPro(iterations=1, random_state=32)
    opt_0.forge_experiment(
        XGBRegressor,
        feature_engineer=[
            Categorical([es_a], optional=True),
            Categorical([es_b, es_c], optional=True),
            Categorical([es_d, es_e], optional=True),
        ],
    )
    opt_0.get_ready()

    # Assert `opt_0` matched with `exp_0`
    assert len(opt_0.similar_experiments) == 1 
开发者ID:HunterMcGushion,项目名称:hyperparameter_hunter,代码行数:21,代码来源:test_saved_engineer_step.py

示例8: test_predict_single_feature_vector

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def test_predict_single_feature_vector(self):
        # Train model
        training_data = datasets.make_regression(n_features=1)
        regressor = XGBRegressor()
        regressor.fit(training_data[0], training_data[1])

        # Get some test results
        test_data = [[0.1]]
        test_results = regressor.predict(np.asarray(test_data))

        # Serialise the models to Elasticsearch
        feature_names = ["f0"]
        model_id = "test_xgb_regressor"

        es_model = ImportedMLModel(
            ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=True
        )

        # Single feature
        es_results = es_model.predict(test_data[0])

        np.testing.assert_almost_equal(test_results, es_results, decimal=2)

        # Clean up
        es_model.delete_model() 
开发者ID:elastic,项目名称:eland,代码行数:27,代码来源:test_imported_ml_model_pytest.py

示例9: test_tree_ensemble_regressor_xgboost

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def test_tree_ensemble_regressor_xgboost(self):
        
        this = os.path.dirname(__file__)
        data_train = pandas.read_csv(os.path.join(this, "xgboost.model.xgb.n4.d3.train.txt"), header=None)

        X = data_train.iloc[:, 1:].values
        y = data_train.iloc[:, 0].values

        params = dict(n_estimator=4, max_depth=3)
        model = XGBRegressor(**params).fit(X, y)
        # See https://github.com/apple/coremltools/issues/51.
        model.booster = model.get_booster
        model_coreml = convert_xgb_to_coreml(model)
        model_onnx = convert_cml(model_coreml)
        assert model_onnx is not None
        if sys.version_info[0] >= 3:
            # python 2.7 returns TypeError: can't pickle instancemethod objects
            dump_data_and_model(X.astype(numpy.float32), model, model_onnx,
                                         basename="CmlXGBoostRegressor-OneOff-Reshape",
                                         allow_failure=True) 
开发者ID:onnx,项目名称:onnxmltools,代码行数:22,代码来源:test_cml_TreeEnsembleRegressorConverterXGBoost.py

示例10: test_xgb_regressor

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def test_xgb_regressor(self):
        iris = load_diabetes()
        x = iris.data
        y = iris.target
        x_train, x_test, y_train, _ = train_test_split(x, y, test_size=0.5,
                                                       random_state=42)
        xgb = XGBRegressor()
        xgb.fit(x_train, y_train)
        conv_model = convert_xgboost(
            xgb, initial_types=[('input', FloatTensorType(shape=['None', 'None']))])
        self.assertTrue(conv_model is not None)
        dump_data_and_model(
            x_test.astype("float32"),
            xgb,
            conv_model,
            basename="SklearnXGBRegressor-Dec3",
            allow_failure="StrictVersion("
            "onnx.__version__)"
            "< StrictVersion('1.3.0')",
        ) 
开发者ID:onnx,项目名称:onnxmltools,代码行数:22,代码来源:test_xgboost_converters.py

示例11: fit

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def fit(self, X, y):
		"""load the data in, initiate the models"""
		self.X = X
		self.y = y
		self.opt_XGBoost_reg = xgb.XGBRegressor(**self.opt_xgb_params)
		self.opt_forest_reg = RandomForestRegressor(**self.opt_rf_params)
		self.opt_svm_reg = SVR(**self.opt_svm_params)
		""" fit the models """
		self.opt_XGBoost_reg.fit(self.X ,self.y)
		self.opt_forest_reg.fit(self.X ,self.y)
		self.opt_svm_reg.fit(self.X ,self.y) 
开发者ID:CNuge,项目名称:kaggle-code,代码行数:13,代码来源:hockey_front_to_back.py

示例12: fit

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def fit(self, dataset, **kwargs):
    """
    Fits XGBoost model to data.
    """
    X = dataset.X
    y = np.squeeze(dataset.y)
    w = np.squeeze(dataset.w)
    seed = self.model_instance.random_state
    import xgboost as xgb
    if isinstance(self.model_instance, xgb.XGBClassifier):
      xgb_metric = "auc"
      sklearn_metric = "roc_auc"
      stratify = y
    elif isinstance(self.model_instance, xgb.XGBRegressor):
      xgb_metric = "mae"
      sklearn_metric = "neg_mean_absolute_error"
      stratify = None
    best_param = self._search_param(sklearn_metric, X, y)
    # update model with best param
    self.model_instance = self.model_class(**best_param)

    # Find optimal n_estimators based on original learning_rate
    # and early_stopping_rounds
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2, random_state=seed, stratify=stratify)

    self.model_instance.fit(
        X_train,
        y_train,
        early_stopping_rounds=self.early_stopping_rounds,
        eval_metric=xgb_metric,
        eval_set=[(X_train, y_train), (X_test, y_test)],
        verbose=self.verbose)
    # Since test size is 20%, when retrain model to whole data, expect
    # n_estimator increased to 1/0.8 = 1.25 time.
    estimated_best_round = np.round(self.model_instance.best_ntree_limit * 1.25)
    self.model_instance.n_estimators = np.int64(estimated_best_round)
    self.model_instance.fit(X, y, eval_metric=xgb_metric, verbose=self.verbose) 
开发者ID:deepchem,项目名称:deepchem,代码行数:40,代码来源:__init__.py

示例13: test_xgboost_regression

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def test_xgboost_regression(self):
    import xgboost
    np.random.seed(123)

    dataset = sklearn.datasets.load_diabetes()
    X, y = dataset.data, dataset.target
    frac_train = .7
    n_samples = len(X)
    n_train = int(frac_train * n_samples)
    X_train, y_train = X[:n_train], y[:n_train]
    X_test, y_test = X[n_train:], y[n_train:]
    train_dataset = dc.data.NumpyDataset(X_train, y_train)
    test_dataset = dc.data.NumpyDataset(X_test, y_test)

    regression_metric = dc.metrics.Metric(dc.metrics.mae_score)
    # Set early stopping round = n_estimators so that esr won't work
    esr = {'early_stopping_rounds': 50}

    xgb_model = xgboost.XGBRegressor(n_estimators=50, random_state=123)
    model = dc.models.XGBoostModel(xgb_model, verbose=False, **esr)

    # Fit trained model
    model.fit(train_dataset)
    model.save()

    # Eval model on test
    scores = model.evaluate(test_dataset, [regression_metric])
    assert scores[regression_metric.name] < 55 
开发者ID:deepchem,项目名称:deepchem,代码行数:30,代码来源:test_generalize.py

示例14: test_xgboost_multitask_regression

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def test_xgboost_multitask_regression(self):
    import xgboost
    np.random.seed(123)
    n_tasks = 4
    tasks = range(n_tasks)
    dataset = sklearn.datasets.load_diabetes()
    X, y = dataset.data, dataset.target
    y = np.reshape(y, (len(y), 1))
    y = np.hstack([y] * n_tasks)

    frac_train = .7
    n_samples = len(X)
    n_train = int(frac_train * n_samples)
    X_train, y_train = X[:n_train], y[:n_train]
    X_test, y_test = X[n_train:], y[n_train:]
    train_dataset = dc.data.DiskDataset.from_numpy(X_train, y_train)
    test_dataset = dc.data.DiskDataset.from_numpy(X_test, y_test)

    regression_metric = dc.metrics.Metric(dc.metrics.mae_score)
    esr = {'early_stopping_rounds': 50}

    def model_builder(model_dir):
      xgb_model = xgboost.XGBRegressor(n_estimators=50, seed=123)
      return dc.models.XGBoostModel(xgb_model, model_dir, verbose=False, **esr)

    model = dc.models.SingletaskToMultitask(tasks, model_builder)

    # Fit trained model
    model.fit(train_dataset)
    model.save()

    # Eval model on test
    scores = model.evaluate(test_dataset, [regression_metric])
    for score in scores[regression_metric.name]:
      assert score < 50 
开发者ID:deepchem,项目名称:deepchem,代码行数:37,代码来源:test_generalize.py

示例15: load_spark_model

# 需要导入模块: import xgboost [as 别名]
# 或者: from xgboost import XGBRegressor [as 别名]
def load_spark_model(model_path, metadata_path):

    import xgboost as xgb
    import json
    import numpy as np

    if not isinstance(model_path, str) or not isinstance(model_path, str):
        raise ValueError("model and metadata paths must be str, not {0} and {1}".format(type(model_path), type(metadata_path)))

    with open(metadata_path) as f:
        metadata = json.loads(f.read().strip())

    xgb_class = metadata.get("class")
    if xgb_class == "ml.dmlc.xgboost4j.scala.spark.XGBoostClassificationModel":
        clf = xgb.XGBClassifier()
        setattr(clf, "base_score", metadata["paramMap"]["baseScore"])
    elif xgb_class == "ml.dmlc.xgboost4j.scala.spark.XGBoostRegressionModel":
        clf = xgb.XGBRegressor()
    else:
        raise ValueError("Unsupported model.")

    setattr(clf, "objective", metadata["paramMap"]["objective"])
    setattr(clf, "missing",
            np.nan if metadata["paramMap"]["missing"] in ["NaN", "nan", "null", "None"] else metadata["paramMap"][
                "missing"])
    setattr(clf, "booster", metadata["paramMap"].get("booster", "gbtree"))
    setattr(clf, "n_estimators", metadata["paramMap"].get("numRound", 1))

    booster = xgb.Booster()
    booster.load_model(model_path)

    clf._Booster = booster
    return clf 
开发者ID:znly,项目名称:go-ml-transpiler,代码行数:35,代码来源:spark_tools.py


注:本文中的xgboost.XGBRegressor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。