当前位置: 首页>>代码示例>>Python>>正文


Python wmt_utils.initialize_vocabulary方法代码示例

本文整理汇总了Python中wmt_utils.initialize_vocabulary方法的典型用法代码示例。如果您正苦于以下问题:Python wmt_utils.initialize_vocabulary方法的具体用法?Python wmt_utils.initialize_vocabulary怎么用?Python wmt_utils.initialize_vocabulary使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在wmt_utils的用法示例。


在下文中一共展示了wmt_utils.initialize_vocabulary方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: print_vectors

# 需要导入模块: import wmt_utils [as 别名]
# 或者: from wmt_utils import initialize_vocabulary [as 别名]
def print_vectors(embedding_key, vocab_path, word_vector_file):
  """Print vectors from the given variable."""
  _, rev_vocab = wmt.initialize_vocabulary(vocab_path)
  vectors_variable = [v for v in tf.trainable_variables()
                      if embedding_key == v.name]
  if len(vectors_variable) != 1:
    data.print_out("Word vector variable not found or too many.")
    sys.exit(1)
  vectors_variable = vectors_variable[0]
  vectors = vectors_variable.eval()
  l, s = vectors.shape[0], vectors.shape[1]
  data.print_out("Printing %d word vectors from %s to %s."
                 % (l, embedding_key, word_vector_file))
  with tf.gfile.GFile(word_vector_file, mode="w") as f:
    # Lines have format: dog 0.045123 -0.61323 0.413667 ...
    for i in xrange(l):
      f.write(rev_vocab[i])
      for j in xrange(s):
        f.write(" %.8f" % vectors[i][j])
      f.write("\n") 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:22,代码来源:neural_gpu_trainer.py

示例2: assign_vectors

# 需要导入模块: import wmt_utils [as 别名]
# 或者: from wmt_utils import initialize_vocabulary [as 别名]
def assign_vectors(word_vector_file, embedding_key, vocab_path, sess):
  """Assign the embedding_key variable from the given word vectors file."""
  # For words in the word vector file, set their embedding at start.
  if not tf.gfile.Exists(word_vector_file):
    data.print_out("Word vector file does not exist: %s" % word_vector_file)
    sys.exit(1)
  vocab, _ = wmt.initialize_vocabulary(vocab_path)
  vectors_variable = [v for v in tf.trainable_variables()
                      if embedding_key == v.name]
  if len(vectors_variable) != 1:
    data.print_out("Word vector variable not found or too many.")
    sys.exit(1)
  vectors_variable = vectors_variable[0]
  vectors = vectors_variable.eval()
  data.print_out("Pre-setting word vectors from %s" % word_vector_file)
  with tf.gfile.GFile(word_vector_file, mode="r") as f:
    # Lines have format: dog 0.045123 -0.61323 0.413667 ...
    for line in f:
      line_parts = line.split()
      # The first part is the word.
      word = line_parts[0]
      if word in vocab:
        # Remaining parts are components of the vector.
        word_vector = np.array(map(float, line_parts[1:]))
        if len(word_vector) != FLAGS.vec_size:
          data.print_out("Warn: Word '%s', Expecting vector size %d, "
                         "found %d" % (word, FLAGS.vec_size,
                                       len(word_vector)))
        else:
          vectors[vocab[word]] = word_vector
  # Assign the modified vectors to the vectors_variable in the graph.
  sess.run([vectors_variable.initializer],
           {vectors_variable.initializer.inputs[1]: vectors}) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:35,代码来源:neural_gpu_trainer.py


注:本文中的wmt_utils.initialize_vocabulary方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。