本文整理汇总了Python中wandb.init方法的典型用法代码示例。如果您正苦于以下问题:Python wandb.init方法的具体用法?Python wandb.init怎么用?Python wandb.init使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类wandb
的用法示例。
在下文中一共展示了wandb.init方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def __init__(self):
super(Value, self).__init__()
self.fc1 = nn.Linear(np.array(env.observation_space.shape).prod(), 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 1)
if args.weights_init == "orthogonal":
torch.nn.init.orthogonal_(self.fc1.weight)
torch.nn.init.orthogonal_(self.fc2.weight)
torch.nn.init.orthogonal_(self.fc3.weight)
elif args.weights_init == "xavier":
torch.nn.init.xavier_uniform_(self.fc1.weight)
torch.nn.init.xavier_uniform_(self.fc2.weight)
torch.nn.init.orthogonal_(self.fc3.weight)
else:
raise NotImplementedError
示例2: __init__
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def __init__(self):
super(Policy, self).__init__()
self.fc1 = nn.Linear(input_shape, 120)
self.fc2 = nn.Linear(120, 84)
self.mean = nn.Linear(84, output_shape)
self.logstd = nn.Parameter(torch.zeros(1, output_shape))
if args.pol_layer_norm:
self.ln1 = torch.nn.LayerNorm(120)
self.ln2 = torch.nn.LayerNorm(84)
if args.weights_init == "orthogonal":
torch.nn.init.orthogonal_(self.fc1.weight)
torch.nn.init.orthogonal_(self.fc2.weight)
torch.nn.init.orthogonal_(self.mean.weight)
elif args.weights_init == "xavier":
torch.nn.init.xavier_uniform_(self.fc1.weight)
torch.nn.init.xavier_uniform_(self.fc2.weight)
torch.nn.init.xavier_uniform_(self.mean.weight)
else:
raise NotImplementedError
示例3: __init__
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def __init__(self):
super(Policy, self).__init__()
self.fc1 = nn.Linear(np.array(env.observation_space.shape).prod(), 120)
self.fc2 = nn.Linear(120, 84)
self.mean = nn.Linear(84, np.prod(env.action_space.shape))
self.logstd = nn.Parameter(torch.zeros(1, np.prod(env.action_space.shape)))
if args.pol_layer_norm:
self.ln1 = torch.nn.LayerNorm(120)
self.ln2 = torch.nn.LayerNorm(84)
if args.weights_init == "orthogonal":
torch.nn.init.orthogonal_(self.fc1.weight)
torch.nn.init.orthogonal_(self.fc2.weight)
torch.nn.init.orthogonal_(self.mean.weight)
elif args.weights_init == "xavier":
torch.nn.init.xavier_uniform_(self.fc1.weight)
torch.nn.init.xavier_uniform_(self.fc2.weight)
torch.nn.init.xavier_uniform_(self.mean.weight)
else:
raise NotImplementedError
示例4: experiment
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def experiment(self) -> Run:
r"""
Actual wandb object. To use wandb features in your
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
Example::
self.logger.experiment.some_wandb_function()
"""
if self._experiment is None:
if self._offline:
os.environ['WANDB_MODE'] = 'dryrun'
self._experiment = wandb.init(
name=self._name, dir=self._save_dir, project=self._project, anonymous=self._anonymous,
reinit=True, id=self._id, resume='allow', tags=self._tags, entity=self._entity,
group=self._group)
# save checkpoints in wandb dir to upload on W&B servers
if self._log_model:
self.save_dir = self._experiment.dir
return self._experiment
示例5: train_init
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def train_init(self, experiment_directory, experiment_name, model_name,
resume, output_directory):
import wandb
logger.info("wandb.train_init() called...")
wandb.init(project=os.getenv("WANDB_PROJECT", experiment_name),
name=model_name, sync_tensorboard=True, dir=output_directory)
wandb.save(os.path.join(experiment_directory, "*"))
示例6: __init__
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def __init__(self, hp, logdir):
self.hp = hp
if hp.log.use_tensorboard:
self.tensorboard = SummaryWriter(logdir)
if hp.log.use_wandb:
wandb_init_conf = hp.log.wandb_init_conf.to_dict()
wandb_init_conf["config"] = hp.to_dict()
wandb.init(**wandb_init_conf)
示例7: layer_init
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def layer_init(layer, weight_gain=1, bias_const=0):
if isinstance(layer, nn.Linear):
if args.weights_init == "xavier":
torch.nn.init.xavier_uniform_(layer.weight, gain=weight_gain)
elif args.weights_init == "orthogonal":
torch.nn.init.orthogonal_(layer.weight, gain=weight_gain)
if args.bias_init == "zeros":
torch.nn.init.constant_(layer.bias, bias_const)
示例8: layer_init
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
示例9: reset_parameters
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def reset_parameters(self):
nn.init.constant_(self.weight, 0.0)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
示例10: set_wandb
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def set_wandb(self):
"""Set configuration for wandb logging."""
wandb.init(
project=self.log_cfg.env_name,
name=f"{self.log_cfg.agent}/{self.log_cfg.curr_time}",
)
wandb.config.update(vars(self.args))
wandb.config.update(self.hyper_params)
shutil.copy(self.args.cfg_path, os.path.join(wandb.run.dir, "config.py"))
示例11: set_wandb
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def set_wandb(self):
"""Set configuration for wandb logging."""
wandb.init(
project=self.env_info.name,
name=f"{self.log_cfg.agent}/{self.log_cfg.curr_time}",
)
wandb.config.update(vars(self.args))
shutil.copy(self.args.cfg_path, os.path.join(wandb.run.dir, "config.py"))
示例12: create_experiment
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def create_experiment(self):
"""Creates and returns a new experiment"""
experiment = wandb.init(
name=self._name, dir=self._dir, project=self._project,
anonymous=self._anonymous, reinit=True, id=self._id,
resume='allow', tags=self._tags, entity=self._entity
)
wandb.run.save()
return experiment
示例13: neptune_experiment_cls
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def neptune_experiment_cls(self):
import neptune
neptune.init(project_qualified_name="tests/dry-run",
backend=neptune.OfflineBackend())
return neptune.create_experiment
示例14: wandb_run_cls
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def wandb_run_cls(self):
import wandb
os.environ['WANDB_MODE'] = 'dryrun' # run offline
with wandb.init(anonymous="allow") as run:
return run
示例15: run_wandb
# 需要导入模块: import wandb [as 别名]
# 或者: from wandb import init [as 别名]
def run_wandb(entity, project, run_id, run_cls: type = Training, checkpoint_path: str = None):
"""run and save config and stats to https://wandb.com"""
wandb_dir = mkdtemp() # prevent wandb from polluting the home directory
atexit.register(shutil.rmtree, wandb_dir, ignore_errors=True) # clean up after wandb atexit handler finishes
import wandb
config = partial_to_dict(run_cls)
config['seed'] = config['seed'] or randrange(1, 1000000) # if seed == 0 replace with random
config['environ'] = log_environment_variables()
config['git'] = git_info()
resume = checkpoint_path and exists(checkpoint_path)
wandb.init(dir=wandb_dir, entity=entity, project=project, id=run_id, resume=resume, config=config)
for stats in iterate_episodes(run_cls, checkpoint_path):
[wandb.log(json.loads(s.to_json())) for s in stats]